Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2026-02-05
Page range: 279-293
Abstract views: 32
PDF downloaded: 3

Morphological and genetic differentiations revealed a new freshwater species of Gammarus from the French Pyrenees

University of Rennes; CNRS; ECOBIO – UMR 6553; F–35000; Rennes; France
CNRS; Station d’Écologie Théorique et Expérimentale du CNRS; UAR–2029; 2 route du CNRS; F–09200 Moulis; France
Crustacea Amphipoda integrative taxonomy Gammarus ariegiensis France

Abstract

This study describes morphologically and molecularly a new species, Gammarus ariegiensis sp. nov. from the Pyrenean Mountains in southern France. The new species is characterized by the lack of calceoli on the second antenna, the presence of long setae on anterior margin of merus and carpus of pereopod 5–7, endopodite of uropod 3 between 0.4 and 0.5 times the exopodite. A full description of the new species and information about its distribution is given in this paper together with molecular data (COI and 28S genes) corroborating the morphological delimitation of the new species.

 

References

  1. Ayati, K., Hupało, K., Dhaouadi, S., Rewicz, T., Grabowski, M. & Piscart, C. (2023) Conservation of freshwater biodiversity in Tunisia in a climate change context: combining amphipod distribution data and molecular analyses to improve priorities. Biodiversity and Conservation, 32 (7), 2539–2559. https://doi.org/10.1007/s10531-023-02617-8
  2. Barnard, J.L. & Barnard, C.M. (1983) Freshwater Amphipoda of the world. I. Evolutionary Patterns. II. Handbook and Bibliography. Hayfield Associates, Mount Vernon, Virginia, xix + 830 pp.
  3. Baytaşoğlu, H., Aksu, İ. & Özbek, M. (2024) Gammarus sezgini sp. nov. (Arthropoda, Amphipoda, Gammaridae), a new amphipod species from the Eastern Black Sea region of Türkiye. Zoosystematics and Evolution, 100 (3), 989–1004. https://doi.org/10.3897/zse.100.121692
  4. Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17 (4), 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  5. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9 (8), 772–772. https://doi.org/10.1038/nmeth.2109
  6. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5), 1792–1797. https://doi.org/10.1093/nar/gkh340
  7. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39 (4), 783–791. https://doi.org/10.2307/2408678
  8. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299.
  9. Goedmakers, A. (1974) Les Gammaridae (Crustaces, Amphipodes) du Massif Central. Bulletin Zoologisch Museum, 3 (23), 211–219.
  10. Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27 (2), 221–224. https://doi.org/10.1093/molbev/msp259
  11. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59 (3), 307–321. https://doi.org/10.1093/sysbio/syq010
  12. Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings Biological Sciences, 270 (1512), 313–321. https://doi.org/10.1098/rspb.2002.2218
  13. Hou, Z., Sket, B., Fišer, C. & Li, S. (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences, 108 (35), 14533–14538. https://doi.org/10.1073/pnas.1104636108
  14. Karaman, G. & Pinkster, S. (1977) Freshwater Gammarus species from Europe, North-Africa and adjacent regions of Asia (Crustacea—Amphipoda). Part 1. Gammarus pulex-group and related species. Bijdragen Tot De Dierkunde, 47 (1), 1–97. https://doi.org/10.1163/26660644-04701001
  15. Lefébure, T., Douady, C.J., Gouy, M. & Gibert, J. (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution, 40 (2), 435–447. https://doi.org/10.1016/j.ympev.2006.03.014
  16. Leigh, J.W. & Bryant, D. (2015) Popart: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410
  17. Pinkster, S. (1972) On members of the Gammarus pulex-group (Crustacea—Amphipoda) from western Europe. Bijdragen tot de Dierkunde, 42 (2), 164–188. https://doi.org/10.1163/26660644-04202005
  18. Pinkster, S. (1983) The value of morphological characters in the taxonomy of Gammarus. Beaufortia, 33 (2), 15–28.
  19. Pinkster, S. (1988) Problems in the taxonomy of the freshwater Gammarids with special emphasis on the genus Echinogammarus in Italy. In: Studies on Amphipoda. Brill, Leiden, pp. 245–255. https://doi.org/10.1163/9789004629417_018
  20. Pinkster, S. & Scholl, A. (1984) Gammarus orinos sp. nov. from the Massif Central (France): its genetic and morphological distinction from Gammarus ibericus Margalef, 1951 (Crustacea, Amphipoda). Bijdragen tot de dierkunde, 54 (1), 139–145. https://doi.org/10.1163/26660644-05401010
  21. Piscart, C. & Bollache, L. (2012) Crustacés amphipodes de surface (Gammare d’eau douce). Association Française de Limnologie, Thonon les Bains, 113 pp.
  22. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21 (2), 609–620. https://doi.org/10.1111/1755-0998.13281
  23. Roux, A.-L. (1967) Les gammares du groupe pulex, crustacés amphipodes : essai de systématique biologique. Université Claude Bernard Lyon 1, Lyon, 172 pp.
  24. Stock, J.H. & Von Vaupel Klein, J.C. (1996) Mounting Media Revisited: The Suitability of Reyne’s Fluid for Small Crustaceans on JSTOR. Crustaceana, 69 (6), 794–798. https://doi.org/10.1163/156854096X00826
  25. Vences, M., Patmanidis, S., Fedosov, A., Miralles, A. & Puillandre, N. (2024) iTaxoTools 1.0: Improved DNA Barcode Exploration with TaxI2. In: DeSalle, R. (Ed.), DNA Barcoding: Methods and Protocols. Springer US, New York, New York, pp. 281–296. https://doi.org/10.1007/978-1-0716-3581-0_18
  26. Verovnik, R., Sket, B. & Trontelj, P.P. (2005) The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Molecular Ecology, 14 (14), 4355–4369. https://doi.org/10.1111/j.1365-294X.2005.02745.x
  27. Wattier, R., Mamos, T., Copilaş-Ciocianu, D., Jelić, M., Ollivier, A., Chaumot, A., Danger, M., Felten, V., Piscart, C., Žganec, K., Rewicz, T., Wysocka, A., Rigaud, T. & Grabowski, M. (2020) Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Scientific Reports, 10 (1), 16536. https://doi.org/10.1038/s41598-020-73739-0
  28. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29 (22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499

How to Cite

Piscart, C. & Blanchet, S. (2026) Morphological and genetic differentiations revealed a new freshwater species of Gammarus from the French Pyrenees. Zootaxa, 5757 (3), 279–293. https://doi.org/10.11646/zootaxa.5757.3.5