Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-10-31
Page range: 301-332
Abstract views: 87
PDF downloaded: 32

Literature review of the fossil record of Systellognatha (Insecta: Plecoptera) and its implications for the biogeography of the Order

Department of Zoology and Entomology, Rhodes University, Makhanda, 6139, South Africa
Ulster Museum, National Museums Northern Ireland, Belfast, United Kingdom
Department of Zoology and Entomology, Rhodes University, Makhanda, 6139, South Africa
Department of Zoology and Entomology, Rhodes University, Makhanda, 6139, South Africa; Research and Exhibitions Department, South African Museum, Iziko Museums of South Africa, Cape Town, 8001, South Africa
Plecoptera Systematics Evolution Stoneflies Palaeoentomology Morphology

Abstract

The unusual anti-tropical distribution of the Plecopteran (Insecta, stoneflies) suborders Antarctoperlaria and Arctoperlaria, and the biogeographical processes that caused it have fascinated researchers for decades. In particular, debate surrounds what led to the initial diversification of each sub-order, and the dispersal of two Arctoperlarian families, Notonemouridae and Perlidae, into the Southern Hemisphere. The fossil record of Plecoptera is vital for exploring these questions, as it provides the only direct evidence of ancient Plecopteran diversity and occurrence, and can be used to constrain phylogenetic studies. However, many authors question the stonefly fossil record, citing uncertain and contradictory taxonomy caused by an overreliance on phenetic similarity instead of syn- and autapomorphies. Here, we review the published descriptions and figures of all fossilised Systellognatha and fossilised austral species to assess the presence of apomorphic characters, and critically examine their placement in the Plecopteran phylogeny. As the monophyly and diagnoses of extinct families and genera are not assessed, formal systematic reclassifications are not proposed, and this work is explicitly disclaimed as a nomenclatural revision in terms of Article 8.2 of the International Code of Zoological Nomenclature. We found insufficient evidence to support the current classification of 56% of the 113 fossil species reviewed. From the remaining species, specimens with apomorphies of Gripopterygidae, Notonemouridae, Peltoperlidae, Pteronarcyidae, Perlidae and Perlodidae were identified. These allowed for the recommendation of 12 fossil species for the calibration of dated phylogenetic analyses and palaeobiogeographical interpretations. These fossils point to Antarctoperlaria and Arctoperlaria diverging due to vicariance, either on Pangea or shortly following its separation in the Jurassic. Notonemouridae probably dispersed into the Southern Hemisphere during the Early Jurassic, with two independent dispersals of Perlidae occurring in the Cenozoic.

References

  1. Aristov, D.S., Bashkuev, A.S., Golubev, V.K., Gorochov, A.V., Karasev, E.V., Kopylov, D.S., Ponomarenko, A.G., Rasnitsyn, A.P., Rasnitsyn, D.A., Sinitshenkova, N.D., Sukatsheva, I.D. & Vassilenko, D.V. (2013) Fossil insects of the middle and upper Permian of European Russia. Paleontological Journal, 47 (7), 641–832. https://doi.org/10.1134/S0031030113070010
  2. Avelino-Capistrano, F., Pessacq, P. & Barbosa, L.S. (2018) Chapter 4 - Order Plecoptera. In: Hamada, N., Thorp, J.H. & Rogers, D.C. (Eds.), Thorp and Covich’s Freshwater Invertebrates. Vol. 3. Keys to Neotropical Hexapoda. 4th Edition. Academic Press, Cambridge, pp. 119–141.
  3. Banarescu, P. (1990) General distribution and dispersal of freshwater animals. Aula-Verlag, Wiesbaden, 511 pp.
  4. Bell, M.A. & Lloyd, G.T. (2015) strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology, 58 (2), 379–389. https://doi.org/10.1111/pala.12142
  5. Béthoux, O. (2005) Wing venation pattern of Plecoptera (Insecta: Neoptera). Illiesia, 1 (9), 52–81.
  6. Béthoux, O., Cui, Y., Kondratieff, B., Stark, B. & Ren, D. (2011) At last, a Pennsylvanian stem-stonefly (Plecoptera) discovered. BMC Evolutionary Biology, 11 (1), 248. https://doi.org/10.1186/1471-2148-11-248
  7. Boger, S.D. (2011) Antarctica—Before and after Gondwana. Gondwana Research, 19 (2), 335–371. https://doi.org/10.1016/j.gr.2010.09.003
  8. Bowman, R.O. & Smith, R.F. (2021) Vertical migration of adult Plecoptera and Trichoptera above forested headwater streams. Insects, 12 (9), 770. https://doi.org/10.3390/insects12090770
  9. Bowman, V.C., Francis, J.E., Askin, R.A., Riding, J.B. & Swindles, G.T. (2014) Latest Cretaceous–earliest Paleogene vegetation and climate change at the high southern latitudes: palynological evidence from Seymour Island, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 408, 26–47. https://doi.org/10.1016/j.palaeo.2014.04.018
  10. Brauer, F., Redtenbacher, J. & Ganglbauer, L. (1889) Fossile Insekten aus der Juraformation Ost-Sibiriens. Mémoires de l’Académie Impériale des Sciences de St. Pétersbourg: Imperatorskaja Akademija Nauk, 7, 1–22.
  11. Briers, R.A., Cariss, H.M. & Gee, J.H. (2002) Dispersal of adult stoneflies (Plecoptera) from upland streams draining catchments with contrasting land-use. Archiv für Hydrobiologie, 155 (4), 627–644. https://doi.org/10.1127/archiv-hydrobiol/155/2002/627
  12. Cai, C., Tihelka, E., Giacomelli, M., Lawrence, J.F., Ślipiński, A., Kundrata, R., Yamamoto, S., Thayer, M.K., Newton, A.F., Leschen, R.A.B., Gimmel, M.L., Lü, L., Engel, M.S., Bouchard, P., Huang, D., Pisani, D. & Donoghue, P.C.J. (2022) Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science, 9 (3), 211771. https://doi.org/10.1098/rsos.211771
  13. Carpenter, F.M. (1992) Treatise on invertebrate paleontology. Geological Society of America, Boulder, 377 pp.
  14. Caruso, C. & Wichard, W. (2010) Overview and descriptions of fossil stoneflies (Plecoptera) in Baltic Amber. Entomologie Heute, 22, 85–97.
  15. Céréghino, R. (2006) Ontogenetic diet shifts and their incidence on ecological processes: a case study using two morphologically similar stoneflies (Plecoptera). Acta Oecologica, 30 (1), 33–38. https://doi.org/10.1016/j.actao.2006.01.002
  16. Chaboureau, A.-C., Sepulchre, P., Donnadieu, Y. & Franc, A. (2014) Tectonic-driven climate change and the diversification of angiosperms. Proceedings of the National Academy of Sciences, 111 (39), 14066–14070. https://doi.org/10.1073/pnas.1324002111
  17. Chen, Z.-T. (2018a) A new fossil species of Largusoperla (Plecoptera: Perlidae) and its evolutionary implications. Zootaxa, 4442 (4), 572–578. https://doi.org/10.11646/zootaxa.4442.4.5
  18. Chen, Z.-T. (2018b) First tergal structures for the fossil stonefly genus Largusoperla (Plecoptera: Perlidae): a new species and a new tribe of Acroneuriinae. Zootaxa, 4462 (2), 296–300. https://doi.org/10.11646/zootaxa.4462.2.11
  19. Chen, Z.-T. (2018c) Key to the fossil genus Largusoperla (Plecoptera: Perlidae), with description of two new species from mid-Cretaceous Burmese amber. Zootaxa, 4450 (4), 495–500. https://doi.org/10.11646/zootaxa.4450.4.8
  20. Chen, Z.-T. (2018d) Pinguisoperla, a new fossil genus of Perlidae (Insecta: Plecoptera) from mid-Cretaceous Burmese amber. Zootaxa, 4425 (3), 596–600. https://doi.org/10.11646/zootaxa.4425.3.13
  21. Chen, Z.-T. (2019a) A new stonefly of Acroneuriinae (Plecoptera: Perlidae) from mid-Cretaceous amber of northern Myanmar. Cretaceous Research, 99, 128–132. https://doi.org/10.1016/j.cretres.2019.02.020
  22. Chen, Z.-T. (2019b) A remarkable new stonefly with bisexual structures in mid-Cretaceous Burmese amber (Insecta: Perlidae). Cretaceous Research, 104, 104189. https://doi.org/10.1016/j.cretres.2019.07.019
  23. Chen, Z.-T. (2020) A new stonefly (Plecoptera: Perlidae) from the mid-Cretaceous Burmese amber. Cretaceous Research, 113, 104489. https://doi.org/10.1016/j.cretres.2020.104489
  24. Chen, Z.-T. (2022) The larval morphology of a new mid-Cretaceous stonefly and its systematic position in Plecoptera. Arthropod Systematics & Phylogeny, 80, 423–438. https://doi.org/10.3897/asp.80.e82549
  25. Chen, Z.-T. (2023a) A new peltoperlid stonefly from mid-Cretaceous amber of northern Myanmar (Plecoptera: Peltoperlidae). Cretaceous Research, 150, 105596. https://doi.org/10.1016/j.cretres.2023.105596
  26. Chen, Z.-T. (2023b) Cavoperlidae, a new stonefly family (Insecta: Plecoptera) from mid-Cretaceous Kachin amber of northern Myanmar. Cretaceous Research, 151, 105661. https://doi.org/10.1016/j.cretres.2023.105661
  27. Chen, Z.-T. (2025) Taxonomy and evolutionary implications of a new fossil stonefly family (Insecta, Plecoptera) from Middle Cretaceous Kachin amber of northern Myanmar. Palaeoworld, 34 (1), 100854. https://doi.org/10.1016/j.palwor.2024.06.002
  28. Chen, Z.-T., Sroka, P., van de Kamp, T. & Staniczek, A.H. (2025) Revision of mid-Cretaceous Peltoperlidae (Insecta: Plecoptera) from Burmese amber, with description of two new species in a new genus. Cretaceous Research, 106206. https://doi.org/10.1016/j.cretres.2025.106206
  29. Chen, Z.-T. & Tierno de Figueroa, J.M. (2025) Female-Above Copulation in Cretaceous Stoneflies: Early Mating Strategies of Plecoptera. Annales Zoologici, 75 (2), 475–488. https://doi.org/10.3161/00034541ANZ2025.75.2.005
  30. Chen, Z.-T. & Wang, B. (2019) Review of the fossil genus Largusoperla (Plecoptera: Perlidae): Annotated checklist, taxonomic identification, and description of a new species. Zootaxa, 4565 (2), 281–291. https://doi.org/10.11646/zootaxa.4565.2.12
  31. Chen, Z.-T. & Wang, B. (2020) New females of Perlidae (Insecta: Plecoptera) from Cenomanian Burmese amber. Cretaceous Research, 106, 104203. https://doi.org/10.1016/j.cretres.2019.104203
  32. Chen, Z.-T., Wang, B. & Du, Y.-Z. (2018) Discovery of a new stonefly genus with three new species from mid-Cretaceous Burmese amber (Plecoptera: Perlidae). Zootaxa, 4378 (4), 573–580. https://doi.org/10.11646/zootaxa.4378.4.8
  33. Chen, Z.-T. & Xu, C.-P. (2020) First Peltoperlidae (Insecta: Plecoptera) from mid-Cretaceous Burmese amber. Cretaceous Research, 114, 104506. https://doi.org/10.1016/j.cretres.2020.104506
  34. Chen, Z.-T. & Xu, C.-P. (2022) A new stonefly of Petroperlidae (Insecta: Plecoptera) and its eggs from mid-Cretaceous Kachin amber. Cretaceous Research, 138, 105272. https://doi.org/10.1016/j.cretres.2022.105272
  35. Cifuentes-Ruiz, P., Vega, F.J., Cevallos-Ferriz, S.R., González-Soriano, E., Zaragoza-Caballero, S. & Garibayromero, L. (2007) Oligocene scorpion and insects (Plecoptera and Coleoptera) from the Los Ahuehuetes locality, Puebla, Mexico. Ameghiniana, 44 (4), 673–679.
  36. Combes, S.A. & Daniel, T.L. (2003) Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206 (17), 2979–2987. https://doi.org/10.1242/jeb.00523
  37. Condamine, F.L., Nel, A., Grandcolas, P. & Legendre, F. (2020a) Fossil and phylogenetic analyses reveal recurrent periods of diversification and extinction in dictyopteran insects. Cladistics, 36 (4), 394–412. https://doi.org/10.1111/cla.12412
  38. Condamine, F.L., Silvestro, D., Koppelhus, E.B. & Antonelli, A. (2020b) The rise of angiosperms pushed conifers to decline during global cooling. Proceedings of the National Academy of Sciences, 117 (46), 28867–28875. https://doi.org/10.1073/pnas.2005571117
  39. Crisp, M.D., Trewick, S.A. & Cook, L.G. (2011) Hypothesis testing in biogeography. Trends in Ecology & Evolution, 26 (2), 66–72. https://doi.org/10.1016/j.tree.2010.11.005
  40. Cui, Y., Béthoux, O., Kondratieff, B., Liu, Y. & Ren, D. (2015) Sinosharaperla zhaoi (Insecta: Plecoptera; Early Cretaceous), a Gondwanian element in the northern hemisphere, or just a misplaced species? Journal of Systematic Palaeontology, 13 (10), 883–889. https://doi.org/10.1080/14772019.2014.960903
  41. Cui, Y., Béthoux, O., Kondratieff, B., Shih, C. & Ren, D. (2016) The first fossil salmonfly (Insecta: Plecoptera: Pteronarcyidae), back to the Middle Jurassic. BMC Evolutionary Biology, 16 (1), 217. https://doi.org/10.1186/s12862-016-0787-9
  42. Cui, Y., Ren, D. & Béthoux, O. (2019) The Pangean journey of ‘south forestflies’ (Insecta: Plecoptera) revealed by their first fossils. Journal of Systematic Palaeontology, 17 (3), 255–268. https://doi.org/10.1080/14772019.2017.1407370
  43. DeWalt, R., Hopkins, H., Neu-Becker, U. & Stueber, G. (2025) Plecoptera Species File. Available from: https://plecoptera.speciesfile.org (accessed 21 February 2025)
  44. DeWalt, R.E., Kondratieff, B.C. & Sandberg, J.B. (2015) Order Plecoptera. In: Thorp and Covich’s Freshwater Invertebrates. Elsevier, Amsterdam, pp. 933–949. https://doi.org/10.1016/B978-0-12-385026-3.00036-X
  45. DeWalt, R.E. & Ower, G.D. (2019) Ecosystem services, global diversity, and rate of stonefly species descriptions (Insecta: Plecoptera). Insects, 10 (4), 99. https://doi.org/10.3390/insects10040099
  46. DeWalt, R.E. & South, E.J. (2015) Ephemeroptera, Plecoptera, and Trichoptera on Isle Royale National Park, USA, compared to mainland species pool and size distribution. ZooKeys, 532, 137–158. https://doi.org/10.3897/zookeys.532.6478
  47. DeWalt, R.E. & Resh, V. (2015) Class Hexapoda. In: Thorp, J.H. & Rogers, D.C. (Eds.), Keys to Nearctic Fauna. Vol. 2. Thorp and Covich’s Freshwater Invertebrates. Academic Press, Cambridge, pp. 412–437.
  48. Ding, S., Li, W., Wang, Y., Cameron, S.L., Murányi, D. & Yang, D. (2019) The phylogeny and evolutionary timescale of stoneflies (Insecta: Plecoptera) inferred from mitochondrial genomes. Molecular Phylogenetics and Evolution, 135, 123–135. https://doi.org/10.1016/j.ympev.2019.03.005
  49. Feminella, J.W. & Stewart, K.W. (1986) Diet and predation by three leaf‐associated stoneflies (Plecoptera) in an Arkansas mountain stream. Freshwater Biology, 16 (4), 521–538. https://doi.org/10.1111/j.1365-2427.1986.tb00995.x
  50. Fenoglio, S., Tierno de Figueroa, J.M. & Fochetti, R. (2021) Chapitre 14. Ordre des Plecoptera (Plécoptères). In: Aberlenc, H.-P. (Ed.), Biodiversité, classification, clés de détermination des familles. Montpellier & Plaissan, Versailles, pp. 341–350.
  51. Fochetti, R. & Tierno de Figueroa, J.M. (2008) Global diversity of stoneflies (Plecoptera; Insecta) in freshwater. Freshwater Animal Diversity Assessment, 595, 365–377. https://doi.org/10.1007/s10750-007-9031-3
  52. Francis, J.E. & Poole, I. (2002) Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeography, Palaeoclimatology, Palaeoecology, 182 (1), 47–64. https://doi.org/10.1016/S0031-0182(01)00452-7
  53. Gallego, O.F., Rébori, L.O., Zavattieri, A.M., Sinitshenkova, N., Lara, M.B. & Martins-Neto, R.G. (2011) The most ancient Platyperlidae (Insecta, Perlida= Plecoptera) from early Late Triassic deposits in southern South America. Ameghiniana, 48 (4), 447–461. https://doi.org/10.5710/AMGH.v48i4(360)
  54. García-Girón, J., Múrria, C., Arnedo, M.A., Bonada, N., Cañedo-Argüelles, M., Derka, T., Fernández-Calero, J.M., Li, Z., de Figueroa, J.M.T. & Xie, Z. (2024) A time-calibrated ‘Tree of Life’ of aquatic insects for knitting historical patterns of evolution and measuring extant phylogenetic biodiversity across the world. Earth-Science Reviews, 252, 104767. https://doi.org/10.1016/j.earscirev.2024.104767
  55. Gheerbrant, E. & Rage, J.-C. (2006) Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology, 241 (2), 224–246. https://doi.org/10.1016/j.palaeo.2006.03.016
  56. Green, A.J., Lovas-Kiss, Á., Reynolds, C., Sebastián-González, E., Silva, G.G., Van Leeuwen, C.H.A. & Wilkinson, D.M. (2023) Dispersal of aquatic and terrestrial organisms by waterbirds: A review of current knowledge and future priorities. Freshwater Biology, 68 (2), 173–190. https://doi.org/10.1111/fwb.14038
  57. Green, A.J. & Sánchez, M.I. (2006) Passive internal dispersal of insect larvae by migratory birds. Biology Letters, 2 (1), 55–57. https://doi.org/10.1098/rsbl.2005.0413
  58. Griffith, M.B., Barrows, E.M. & Perry, S.A. (1998) Lateral dispersal of adult aquatic insects (Plecoptera, Trichoptera) following emergence from headwater streams in forested Appalachian catchments. Annals of the Entomological Society of America, 91 (2), 195–201. https://doi.org/10.1093/aesa/91.2.195
  59. Grimaldi, D. & Engel, M.S. (2005) Evolution of the Insects. Cambridge University Press, Cambridge, 755 pp.
  60. Haq, B.U. (2018) Jurassic sea-level variations: a reappraisal. GSA today, 28 (1), 4–10. https://doi.org/10.1130/GSATG359A.1
  61. Hasterok, D., Halpin, J.A., Collins, A.S., Hand, M., Kreemer, C., Gard, M.G. & Glorie, S. (2022) New Maps of Global Geological Provinces and Tectonic Plates. Earth-Science Reviews, 231, 104069. https://doi.org/10.1016/j.earscirev.2022.104069
  62. Hawes, T.C. (2009) Origins and dispersal of the Antarctic fairy shrimp. Antarctic Science, 21 (5), 477–482. https://doi.org/10.1017/S095410200900203X
  63. Heads, M. (2005) Dating nodes on molecular phylogenies: a critique of molecular biogeography. Cladistics, 21 (1), 62–78. https://doi.org/10.1111/j.1096-0031.2005.00052.x
  64. Hynes, H.B.N. (1976) Biology of Plecoptera. Annual Review of Entomology, 21 (1), 135–153. https://doi.org/10.1146/annurev.en.21.010176.001031
  65. Hynes, H.B.N. (1977) Adults and nymphs of British stoneflies (Plecoptera) a key. 3rd Edition. The Freshwater Biological Association, Ambleside, Cumbria, 95 pp.
  66. Hynes, H.B.N. (1988) Biogeography and origins of the North American stoneflies (Plecoptera). The Memoirs of the Entomological Society of Canada, 120 (S144), 31–37. https://doi.org/10.4039/entm120144031-1
  67. Illies, J. (1965) Phylogeny and Zoogeography of the Plecoptera. Annual Review of Entomology, 10 (1), 117–140. https://doi.org/10.1146/annurev.en.10.010165.001001
  68. Jacobs, B.F. (2004) Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359 (1450), 1573–1583. https://doi.org/10.1098/rstb.2004.1533
  69. Jell, P.A. (2004) The fossil insects of Australia. Memoirs of the Queensland Museum, 50 (1), 1–124.
  70. Jell, P.A. & Duncan, P.M. (1986) Invertebrates, mainly insects, from the freshwater, Lower Cretaceous, Koonwarra fossil bed (Korumburra group), South Gippsland, Victoria. Memoirs of the Association of Australasian Palaeontologists, 3, 111–205.
  71. Jouault, C., Legendre, F., Condamine, F.L. & Nel, A. (2021) A new stonefly species (Plecoptera: Perlodidae) from Eocene Baltic amber and questions on the wing venation potential for species diagnostic of fossil Plecoptera. Palaeoentomology, 4 (3), 243–256. https://doi.org/10.11646/palaeoentomology.4.3.12
  72. Jouault, C., Legendre, F., Condamine, F.L., Pouillon, J.-M. & Nel, A. (2022a) A new mid-Cretaceous fossil genus of stonefly (Plecoptera: Perlidae) from the Burmese amber. Cretaceous Research, 133, 105138. https://doi.org/10.1016/j.cretres.2022.105138
  73. Jouault, C., Nel, A., Legendre, F. & Condamine, F.L. (2022b) Estimating the drivers of diversification of stoneflies through time and the limits of their fossil record. Insect Systematics and Diversity, 6 (4), 1–14. https://doi.org/10.1093/isd/ixac017
  74. Kairouani, H., Abbassi, A., Zaghloul, M.N., El Mourabet, M., Micheletti, F., Fornelli, A., Mongelli, G. & Critelli, S. (2024) The Jurassic climate change in the northwest Gondwana (External Rif, Morocco): Evidence from geochemistry and implication for paleoclimate evolution. Marine and Petroleum Geology, 163, 106762. https://doi.org/10.1016/j.marpetgeo.2024.106762
  75. Kaulfuss, U., Lee, D.E., Barratt, B.I.P., Leschen, R.A.B., Larivière, M.-C., Dlussky, G.M., Henderson, I.M. & Harris, A.C. (2015) A diverse fossil terrestrial arthropod fauna from New Zealand: evidence from the early Miocene Foulden Maar fossil lagerstätte. Lethaia, 48 (3), 299–308. https://doi.org/10.1111/let.12106
  76. Kirkaldy, A.P. (2025) Systematics and palaeobiogeography of the Sub-Saharan Neoperla Needham stoneflies (Plecoptera, Perlidae). PhD Thesis. Rhodes University, Grahamstown, 267 pp.
  77. Klopfstein, S. (2021) The age of insects and the revival of the minimum age tree. Austral Entomology, 60 (1), 138–146. https://doi.org/10.1111/aen.12478
  78. Korte, C., Hesselbo, S.P., Ullmann, C.V., Dietl, G., Ruhl, M., Schweigert, G. & Thibault, N. (2015) Jurassic climate mode governed by ocean gateway. Nature Communications, 6 (1), 10015. https://doi.org/10.1038/ncomms10015
  79. Kroner, U. & Romer, R.L. (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Research, 24 (1), 298–329. https://doi.org/10.1016/j.gr.2013.03.001
  80. Kusky, T.M., Toraman, E. & Raharimahefa, T. (2007) The Great Rift Valley of Madagascar: an extension of the Africa–Somali diffusive plate boundary? Gondwana Research, 11 (4), 577–579. https://doi.org/10.1016/j.gr.2006.11.009
  81. Lee, D.E., Kaulfuss, U., Conran, J.G., Bannister, J.M. & Lindqvist, J.K. (2016) Biodiversity and palaeoecology of Foulden Maar: an early Miocene Konservat-Lagerstätte deposit in southern New Zealand. Alcheringa: An Australasian Journal of Palaeontology, 40 (4), 525–541. https://doi.org/10.1080/03115518.2016.1206321
  82. Letsch, H., Simon, S., Frandsen, P.B., Liu, S., Machida, R., Mayer, C., Misof, B., Niehuis, O., Zhou, X. & Wipfler, B. (2021) Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Systematic Entomology, 46 (4), 952–967. https://doi.org/10.1111/syen.12505
  83. Liu, Y., Ren, D., Sinitshenkova, N.D. & Chungkun, S. (2008) Three new stoneflies (Insecta: Plecoptera) from the Yixian Formation of Liaoning, China. Acta Geologica Sinica - English Edition, 82 (2), 249–256. https://doi.org/10.1111/j.1755-6724.2008.tb00575.x
  84. López-Gómez, J., De La Horra, R., Barrenechea, J.F., Borruel-Abadía, V., Martín-Chivelet, J., Juncal, M., Martín-González, F., Heredia, N., Diez, B. & Buatois, L.A. (2021) Early Permian during the Variscan orogen collapse in the equatorial realm: insights from the Cantabrian Mountains (N Iberia) into climatic and environmental changes. International Journal of Earth Sciences, 110 (4), 1355–1387. https://doi.org/10.1007/s00531-021-02020-0
  85. Louca, S. & Pennell, M.W. (2020) Extant timetrees are consistent with a myriad of diversification histories. Nature, 580 (7804), 502–505. https://doi.org/10.1038/s41586-020-2176-1
  86. Malmqvist, B. (2000) How does wing length relate to distribution patterns of stoneflies (Plecoptera) and mayflies (Ephemeroptera)? Biological Conservation, 93 (2), 271–276. https://doi.org/10.1016/S0006-3207(99)00139-1
  87. Martins-Neto, R.G., Gallego, O.F. & Melchor, R.N. (2003) The Triassic insect fauna from South America (Argentina, Brazil and Chile): a checklist (except Blattoptera and Coleoptera) and descriptions of new taxa. Acta Zoologica Cracoviensia, 46 (Suppl), 229–256.
  88. Mayes, C.L., Lawver, L.A. & Sandwell, D.T. (1990) Tectonic history and new isochron chart of the south Pacific. Journal of Geophysical Research: Solid Earth, 95 (B6), 8543–8567. https://doi.org/10.1029/JB095iB06p08543
  89. McCulloch, G.A., Dutoit, L., Craw, D., Kroos, G.C. & Waters, J.M. (2022) Genomics reveals exceptional phylogenetic diversity within a narrow-range flightless insect. Insect Systematics and Diversity, 6 (2), 1–8. https://doi.org/10.1093/isd/ixac009
  90. McCulloch, G.A., Foster, B.J., Ingram, T. & Waters, J.M. (2019) Insect wing loss is tightly linked to the treeline: evidence from a diverse stonefly assemblage. Ecography, 42 (4), 811–813. https://doi.org/10.1111/ecog.04140
  91. McCulloch, G.A., Wallis, G.P. & Waters, J.M. (2016) A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Molecular Phylogenetics and Evolution, 96, 150–160. https://doi.org/10.1016/j.ympev.2015.10.028
  92. McCulloch, G.A., Wallis, G.P. & Waters, J.M. (2017) Does wing size shape insect biogeography? Evidence from a diverse regional stonefly assemblage. Global Ecology and Biogeography, 26 (1), 93–101. https://doi.org/10.1111/geb.12529
  93. McLellan, I.D. (1972) Revisions and new taxa in New Zealand Notonemouridae (Insecta: Plecoptera). New Zealand Journal of Marine and Freshwater Research, 6 (4), 469–481. https://doi.org/10.1080/00288330.1972.9515441
  94. McLellan, I.D. (1991) Notonemouridae (Insecta: Plecoptera). Fauna of New Zealand, 22, 1–64.
  95. McLellan, I.D. & Zwick, P. (2007) New species of and keys to South American Gripopterygidae (Plecoptera). Illiesia, 3 (4), 20–42.
  96. McLoughlin, S. (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49 (3), 271–300. https://doi.org/10.1071/BT00023
  97. Miller, C.S. & Baranyi, V. (2019) Triassic climates. In: Alderton, D. & Elias, S.A. (Eds.), Encyclopedia of Geology. Vol. 1. Academic Press, Cambridge, pp. 514–524. https://doi.org/10.1016/B978-0-12-409548-9.12070-6
  98. Mitchell, A.A. (2013) EDNA, the Fossil Insect Database. Available from: https://fossilinsectdatabase.co.uk/ (accessed 30 June 2024)
  99. Miyasaka, H. & Genkai-Kato, M. (2009) Shift between carnivory and omnivory in stream stonefly predators. Ecological Research, 24 (1), 11–19. https://doi.org/10.1007/s11284-008-0475-3
  100. Mongiardino Koch, N., Garwood, R.J. & Parry, L.A. (2021) Fossils improve phylogenetic analyses of morphological characters. Proceedings of the Royal Society B: Biological Sciences, 288, 20210044. https://doi.org/10.1098/rspb.2021.0044
  101. Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P. & Rygel, M.C. (2007) CO2 -Forced climate and vegetation instability during late paleozoic deglaciation. Science, 315 (5808), 87–91. https://doi.org/10.1126/science.1134207
  102. Morley, R.J. (2000) Origin and evolution of tropical rain forests. John Wiley & Sons, Chichester, 362 pp.
  103. Myers, T.S., Tabor, N.J. & Jacobs, L.L. (2011) Late Jurassic paleoclimate of central Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 311 (1–2), 111–125. https://doi.org/10.1016/j.palaeo.2011.08.013
  104. Nelson, C.H. (2009) Surface ultrastructure and evolution of tarsal attachment structures in Plecoptera (Arthropoda: Hexapoda). Aquatic Insects, 31 (Supplement 1), 523–545. https://doi.org/10.1080/01650420802598210
  105. Parham, J.F., Donoghue, P.C., Bell, C.J., Calway, T.D., Head, J.J., Holroyd, P.A., Inoue, J.G., Irmis, R.B., Joyce, W.G. & Ksepka, D.T. (2012) Best practices for justifying fossil calibrations. Systematic Biology, 61 (2), 346–359. https://doi.org/10.1093/sysbio/syr107
  106. Péron, S., Bourquin, S., Fluteau, F. & Guillocheau, F. (2005) Paleoenvironment reconstructions and climate simulations of the Early Triassic: Impact of the water and sediment supply on the preservation of fluvial systems. Geodinamica Acta, 18 (6), 431–446. https://doi.org/10.3166/ga.18.431-446
  107. Petersen, I., Winterbottom, J.H., Orton, S., Friberg, N., Hildrew, A.G., Spiers, D.C. & Gurney, W.S.C. (1999) Emergence and lateral dispersal of adult Plecoptera and Trichoptera from Broadstone Stream, U.K. Freshwater Biology, 42 (3), 401–416. https://doi.org/10.1046/j.1365-2427.1999.00466.x
  108. Pictet, F.J. & Hagen, H.A. (1856) Die im Bernstein befindlichen Neuropteren der vorwelt bearbeitet von F.J. Pictet-Baraban, und Dr. H. Hagen. In: Berendt, G.C. (Ed.), Die im Bernstein befindlichen organischen reste der Vorwelt gesammelt, in verbindung mit mehreren bearbeitet und herausgegeben von Dr. Georg Carl Berendt, GC, Berendt, ed. Bd. Nicolaischen Buchhandlung, Berlin, pp. 41–125.
  109. Ping, C. (1935) On four fossil insects from Sinkiang. Chinese Journal of Zoology, 1, 107–115.
  110. Pinto, I.D., Piñero, G. & Verde, M. (2000) First Permian insects from Uruguay. Pesquisas em Geociências, 27 (1), 89–96. https://doi.org/10.22456/1807-9806.20183
  111. Pinto, I.D. & Purper, I. (1978) A new genus and two new species of plecopteran insects, from the Triassic of Argentina. Pesquisas em Geociências, 10 (10), 77–86. https://doi.org/10.22456/1807-9806.21776
  112. Prevec, R., Nel, A., Day, M.O., Muir, R.A., Matiwane, A., Kirkaldy, A.P., Moyo, S., Staniczek, A., Cariglino, B., Maseko, Z., Kom, N., Rubidge, B., Garrouste, R., Holland, A. & Barber-James, H. (2022) South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail. Communications Biology, 5 (1), 1154. https://doi.org/10.1038/s42003-022-04132-y
  113. Puttick, M.N. (2016) Partially incorrect fossil data augment analyses of discrete trait evolution in living species. Biology Letters, 12 (8), 20160392. https://doi.org/10.1098/rsbl.2016.0392
  114. Rahman, M.A.T., Negishi, J.N., Alam, M.K., Yiyang, G., Tolod, J.R. & Pongsivapai, P. (2021) Lateral and longitudinal flight dispersals of a stonefly, Alloperla ishikariana (Plecoptera, Chloroperlidae), from the hyporheic zone in a gravel-bed river in Japan. Limnologica, 89, 125886. https://doi.org/10.1016/j.limno.2021.125886
  115. Raff, R.A. (2007) Written in stone: fossils, genes and evo–devo. Nature Reviews Genetics, 8 (12), 911–920. https://doi.org/10.1038/nrg2225
  116. Rees, P.M., Noto, C.R., Parrish, J.M. & Parrish, J.T. (2004) Late Jurassic climates, vegetation, and dinosaur distributions. The Journal of Geology, 112 (6), 643–653. https://doi.org/10.1086/424577
  117. Reguero, M.A., Gelfo, J.N., López, G.M., Bond, M., Abello, A., Santillana, S.N. & Marenssi, S.A. (2014) Final Gondwana breakup: The Paleogene South American native ungulates and the demise of the South America–Antarctica land connection. Global and Planetary Change, 123, 400–413. https://doi.org/10.1016/j.gloplacha.2014.07.016
  118. Riek, E.F. (1954) Further Triassic insects from Brookvale, NSW (orders Orthoptera Saltatoria, Protorthoptera, Perlaria). Records of the Australian Museum, 23, 162–168. https://doi.org/10.3853/j.0067-1975.23.1954.630
  119. Riek, E.F. (1956) A re-examination of the mecopteroid and orthopteroid fossils (Insecta) from the Triassic beds at Denmark Hill, Queensland, with descriptions of further specimens. Australian Journal of Zoology, 4 (1), 98–110. https://doi.org/10.1071/ZO9560098
  120. Riek, E.F. (1973) Fossil insects from the Upper Permian of Natal, South Africa. Annals of the Natal Museum, 21 (3), 513–532.
  121. Riek, E.F. (1976a) A new collection of insects from the Upper Triassic of South Africa. Annals of the Natal Museum, 22 (3), 791–820.
  122. Riek, E.F. (1976b) New Upper Permian insects from Natal, South Africa. Annals of the Natal Museum, 22 (3), 755–789.
  123. Roche, V. & Ringenbach, J.-C. (2022) The Davie Fracture Zone: A recorder of continents drifts and kinematic changes. Tectonophysics, 823, 229188. https://doi.org/10.1016/j.tecto.2021.229188
  124. Roscher, M. & Schneider, J.W. (2006) Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. Geological Society, London, Special Publications, 265 (1), 95–136. https://doi.org/10.1144/GSL.SP.2006.265.01.05
  125. Sánchez, M.I., Green, A.J., Amat, F. & Castellanos, E.M. (2007) Transport of brine shrimps via the digestive system of migratory waders: dispersal probabilities depend on diet and season. Marine Biology, 151 (4), 1407–1415. https://doi.org/10.1007/s00227-006-0577-9
  126. Scher, H.D. & Martin, E.E. (2006) Timing and climatic consequences of the opening of Drake Passage. Science, 312 (5772), 428–430. https://doi.org/10.1126/science.1120044
  127. Schettino, A. & Scotese, C.R. (2005) Apparent polar wander paths for the major continents (200 Ma to the present day): a palaeomagnetic reference frame for global plate tectonic reconstructions. Geophysical Journal International, 163 (2), 727–759. https://doi.org/10.1111/j.1365-246X.2005.02638.x
  128. Schettino, A. & Turco, E. (2009) Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions. Geophysical Journal International, 178 (2), 1078–1097. https://doi.org/10.1111/j.1365-246X.2009.04186.x
  129. Schubnel, T., Perdu, L., Roques, P., Garrouste, R. & Nel, A. (2019) Two new stem-stoneflies discovered in the Pennsylvanian Avion locality, Pas-de-Calais, France (Insecta: ‘Exopterygota’). Alcheringa: An Australasian Journal of Palaeontology, 43 (3), 430–435. https://doi.org/10.1080/03115518.2019.1569159
  130. Scotese, C.R., Vérard, C., Burgener, L., Elling, R.P. & Kocsis, A.T. (2025) The Cretaceous world: plate tectonics, palaeogeography and palaeoclimate. Geological Society, London, Special Publications, 544 (1), SP544-2024–28. https://doi.org/10.1144/SP544-2024-28
  131. Sellwood, B.W. & Valdes, P.J. (2008) Jurassic climates. Proceedings of the Geologists’ Association, 119 (1), 5–17. https://doi.org/10.1016/S0016-7878(59)80068-7
  132. Silvestro, D., Zizka, A., Bacon, C.D., Cascales-Miñana, B., Salamin, N. & Antonelli, A. (2016) Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data. Philosophical Transactions of the Royal Society B: Biological Sciences, 371 (1691), 20150225. https://doi.org/10.1098/rstb.2015.0225
  133. Sinitshenkova, N.D. (1982) Systematic position of the Jurassic stoneflies Mesoleuctra gracilis Br., Redt., Gangl. and Platyperla platypoda Br., Redt., Gangl., and their stratigraphic distribution. Bulletin of the Moscow Society of Naturalists, Geological Section, 57 (4), 112–124.
  134. Sinitshenkova, N.D. (1985) The Jurassic stoneflies of south Siberia and adjoining territories (Perlida = Plecoptera). The Jurassic Insects of Siberia and Mongolia. Trudy Paleontologicheskogo Instituta, Akademiya Nauka SSSR, 211, 148–171.
  135. Sinitshenkova, N.D. (1987) Historical development of the stoneflies. Trudy Paleontologicheskogo Instituta, Akademiya Nauka SSSR, 221, 1–144.
  136. Sinitshenkova, N.D. (1990) New Mesozoic stoneflies from Asia. Paleontological Journal, 24 (3), 62–70.
  137. Sinitshenkova, N.D. (1992) New Upper Mesozoic stone flies from Yakutia (Insecta: Perlida = Plecoptera). Paleontological Journal, 26 (3), 43–55.
  138. Sinitshenkova, N.D. (1998) The first European Cretaceous stonefly (Insecta, Perlida = Plecoptera). Cretaceous Research, 19 (3–4), 317–321. https://doi.org/10.1006/cres.1998.0108
  139. Sinitshenkova, N.D. (2002) Order Perlida Latreille, 1810. The stoneflies (= Plecoptera Burmeister, 1839). In: Rasnitsyn, A. & Quicke, D. (Eds.), History of Insects. Kluwer Academic, Dortrecht, pp. 281–288.
  140. Sinitshenkova, N.D. (2018) New stoneflies of the suborder Perlina Latreille, 1802 (Insecta: Perlida = Plecoptera) from the Middle Permian of the Kostovaty locality in Udmurtia, Russia. Paleontological Journal, 52 (13), 1583–1592. https://doi.org/10.1134/S0031030118130130
  141. Sinitshenkova, N.D. & Yan, E. (2024) The most ancient roachfly (Insecta: Plecoptera, Peltoperlidae) from the Lower Cretaceous of the West Transbaikalia, Russia. Zootaxa, 5523 (2), 284–290. https://doi.org/10.11646/zootaxa.5523.2.9
  142. Sivec, I., Stark, B.P. & Uchida, S. (1988) Synopsis of the world genera of Perlinae (Plecoptera: Perlidae). Scopolia, 16 (1), 1–66.
  143. Slater, G.J., Harmon, L.J. & Alfaro, M.E. (2012) Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution, 66 (12), 3931–3944. https://doi.org/10.1111/j.1558-5646.2012.01723.x
  144. South, E.J., Skinner, R.K., DeWalt, R.E., Kondratieff, B.C., Johnson, K.P., Davis, M.A., Lee, J.J. & Durfee, R.S. (2021) Phylogenomics of the North American Plecoptera. Systematic Entomology, 46 (1), 287–305. https://doi.org/10.1111/syen.12462
  145. Sroka, P. & Prokop, J. (2023) New fossil stoneflies (Plecoptera: Arctoperlaria) from Australia testify ancient dispersal across Pangea. Arthropod Systematics & Phylogeny, 81, 881–888. https://doi.org/10.3897/asp.81.e109833
  146. Sroka, P. & Staniczek, A.H. (2020) Retention of cervical and abdominal gills in the adult of a new fossil stonefly (Insecta, Plecoptera, Petroperlidae) from mid-Cretacous Burmese amber. Cretaceous Research, 107, 104277. https://doi.org/10.1016/j.cretres.2019.104277
  147. Sroka, P., Staniczek, A.H. & Kondratieff, B.C. (2018) ‘Rolling’ stoneflies (Insecta: Plecoptera) from mid-Cretaceous Burmese amber. PeerJ, 6, e5354. https://doi.org/10.7717/peerj.5354
  148. Stark, B.P. & Lentz, D.L. (1992) Dominiperla antigua (Plecoptera: Perlidae), the first stonefly from Dominican amber. Journal of the Kansas Entomological Society, 65, 93–96.
  149. Steinthorsdottir, M., Coxall, H.K., De Boer, A.M., Huber, M., Barbolini, N., Bradshaw, C.D., Burls, N.J., Feakins, S.J., Gasson, E., Henderiks, J., Holbourn, A.E., Kiel, S., Kohn, M.J., Knorr, G., Kürschner, W.M., Lear, C.H., Liebrand, D., Lunt, D.J., Mörs, T., Pearson, P.N., Pound, M.J., Stoll, H. & Strömberg, C.A.E. (2021) The Miocene: The future of the past. Paleoceanography and Paleoclimatology, 36 (4), e2020PA004037. https://doi.org/10.1029/2020PA004037
  150. Stevens, D.M., Bishop, J. & Picker, M.D. (2018) Phylogenetic analysis reveals high local endemism and clear biogeographic breaks in southern African stoneflies (Notonemouridae, Plecoptera). Zootaxa, 4483 (3), 428–454. https://doi.org/10.11646/zootaxa.4483.3.2
  151. Stewart, K.W. & Stark, B.P. (1984) Nymphs of North American Perlodinae genera (Plecoptera: Perlodidae). The Great Basin Naturalist, 44 (3), 373–415.
  152. Storey, B.C. (1996) Microplates and mantle plumes in Antarctica. Terra Antartica, 3 (2), 91–102.
  153. Storey, B.C., Leat, P.T., Weaver, S.D., Pankhurst, R.J., Bradshaw, J.D. & Kelley, S. (1999) Mantle plumes and Antarctica-New Zealand rifting: evidence from mid-Cretaceous mafic dykes. Journal of the Geological Society, 156 (4), 659–671. https://doi.org/10.1144/gsjgs.156.4.0659
  154. Suetsugu, K., Funaki, S., Takahashi, A., Ito, K. & Yokoyama, T. (2018) Potential role of bird predation in the dispersal of otherwise flightless stick insects. Ecology, 99 (6), 1504–1506. https://doi.org/10.1002/ecy.2230
  155. Suetsugu, K., Nozaki, T., Hirota, S.K., Funaki, S., Ito, K., Isagi, Y., Suyama, Y. & Kaneko, S. (2023) Phylogeographical evidence for historical long-distance dispersal in the flightless stick insect Ramulus mikado. Proceedings of the Royal Society B: Biological Sciences, 290 (2008), 20231708. https://doi.org/10.1098/rspb.2023.1708
  156. Terry, M.D. (2004) Phylogeny of the polyneopterous insects with emphasis on Plecoptera: molecular and morphological evidence. Ph.D. Thesis, Brigham Young University, Provo, Utah, 125pp.
  157. Tierno De Figueroa, J.M. & López-Rodríguez, M.J. (2019) Trophic ecology of Plecoptera (Insecta): a review. The European Zoological Journal, 86 (1), 79–102. https://doi.org/10.1080/24750263.2019.1592251
  158. Tillyard, R.J. (1935) Upper Permian Insects of New South Wales. V. The order Perlaria or stone-flies. Proceedings of the Linnean Society of New South Wales, 60 (257–262), 385–391.
  159. Trewick, S.A. (2000) Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. Journal of Biogeography, 27 (5), 1189–1200. https://doi.org/10.1046/j.1365-2699.2000.00492.x
  160. Uchida, S. & Isobe, Y. (1989) Styloperlidae, stat. nov. and Microperlinae, subfam. nov. with a revised system of the family group Systellognatha (Plecoptera). Spixiana, 12 (2), 145–182.
  161. Uhen, M.D., Allen, B., Behboudi, N., Clapham, M.E., Dunne, E., Hendy, A., Holroyd, P.A., Hopkins, M., Mannion, P. & Novack-Gottshall, P. (2023) Paleobiology Database User Guide Version 1.0. PaleoBios, 40 (11), 1–56. https://doi.org/10.5070/P9401160531
  162. Van Dijk, D.E. & Geertsema, H. (2004) A new genus of Permian Plecoptera (Afroperla) from KwaZulu-Natal, South Africa. African Entomology, 12 (2), 268–270.
  163. Wagner, F. (2003) Flight Behaviour of Merolimnic Insects from the Leutra River (Thuringia, Germany). Aquatic Insects, 25 (1), 51–62. https://doi.org/10.1076/aqin.25.1.51.14023
  164. Wang, Y., Engel, M.S., Rafael, J.A., Wu, H., Rédei, D., Xie, Q., Wang, G., Liu, X. & Bu, W. (2016) Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda). Scientific Reports, 6 (1), 38939. https://doi.org/10.1038/srep38939
  165. Winterbourn, M.J. (2005) Dispersal, feeding and parasitism of adult stoneflies (Plecoptera) at a New Zealand forest stream. Aquatic Insects, 27 (3), 155–166. https://doi.org/10.1080/01650420500062840
  166. Wolfe, J.M., Daley, A.C., Legg, D.A. & Edgecombe, G.D. (2016) Fossil calibrations for the arthropod Tree of Life. Earth-Science Reviews, 160, 43–110. https://doi.org/10.1016/j.earscirev.2016.06.008
  167. Wootton, R.J. (1981) Support and deformability in insect wings. Journal of Zoology, 193 (4), 447–468. https://doi.org/10.1111/j.1469-7998.1981.tb01497.x
  168. Wootton, R.J. (1990) The mechanical design of insect wings. Scientific American, 263 (5), 114–121. https://doi.org/10.1038/scientificamerican1190-114
  169. Zwick, P. (1979) Revision of the stonefly family Eustheniidae (Plecoptera), with emphasis on the fauna of the Australian region. Aquatic Insects, 1 (1), 17–50. https://doi.org/10.1080/01650427909360975
  170. Zwick, P. (2000) Phylogenetic system and zoogeography of the Plecoptera. Annual Review of Entomology, 45 (1), 709–746. https://doi.org/10.1146/annurev.ento.45.1.709
  171. Zwick, P. (2004) Key to the west palaearctic genera of stoneflies (Plecoptera) in the larval stage. Limnologica, 34 (4), 315–348. https://doi.org/10.1016/S0075-9511(04)80004-5
  172. Zwick, P. (2006) New family characters of larval Plecoptera, with an analysis of the Chloroperlidae: Paraperlinae. Aquatic Insects, 28 (1), 13–22. https://doi.org/10.1080/01650420500400552
  173. Zwick, P. (2023) A new classification of genus Neoperla and systematic studies of other Perlinae (Plecoptera: Perlidae). Zootaxa, 5339 (2), 101–131. https://doi.org/10.11646/zootaxa.5339.2.1
  174. Zwick, P. & Zwick, A. (2023) Revision of the African Neoperla Needham, 1905 (Plecoptera: Perlidae: Perlinae) based on morphological and molecular data. Zootaxa, 5316 (1), 1–194. https://doi.org/10.11646/zootaxa.5316.1.1

How to Cite

Kirkaldy, A.P., Barber-James, H.M., Richoux, N.B. & Villet, M.H. (2025) Literature review of the fossil record of Systellognatha (Insecta: Plecoptera) and its implications for the biogeography of the Order. Zootaxa, 5716 (3), 301–332. https://doi.org/10.11646/zootaxa.5716.3.1