Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-10-20
Page range: 381-397
Abstract views: 100
PDF downloaded: 3

Resolving the Pseudorhombus arsius cryptic species complex (Teleostei, Paralichthyidae): phylogenetic evidence and description of Pseudorhombus bahudaensis sp. nov.

Estuarine Biology Regional Centre; Zoological Survey of India; Gopalpur-on-Sea; Odisha – 761 002; India; Department of Marine Sciences; Berhampur University; Ganjam; Odisha – 760 007; India
Estuarine Biology Regional Centre; Zoological Survey of India; Gopalpur-on-Sea; Odisha – 761 002; India
Post Graduate Department of Zoology; Berhampur University; Ganjam; Odisha – 760 007; India
Bajkul Milani Mahavidyalaya; Kismat Bajkul; Purba Medinipur – 721 655; West Bengal; India
Department of Marine Sciences; Berhampur University; Ganjam; Odisha – 760 007; India
Estuarine Biology Regional Centre; Zoological Survey of India; Gopalpur-on-Sea; Odisha – 761 002; India
Estuarine Biology Regional Centre; Zoological Survey of India; Gopalpur-on-Sea; Odisha – 761 002; India
Pisces Pseudorhombus bahudaensis Pseudorhombus arsius cryptic species complex

Abstract

The Gangetic Largetooth flounder, Pseudorhombus arsius (Hamilton, 1822), long treated as a single Indo-Pacific species, represents a cryptic species complex. Using a combination of morphological, morphometric, and molecular data, we discovered a distinct lineage that warrants recognition as Pseudorhombus bahudaensis sp. nov. Phylogenetic analyses of COI sequences revealed multiple polyphyletic clades, with two well-supported groups corresponding to P. arsius and the new species. Divergence dating indicates a separation of approximately 17 million years despite extensive morphological overlap. Diagnosis of the new species is supported by vertebral counts, subtle scale morphology, and differences in the position of the lateral line relative to the eye. These findings highlight the importance of integrating genetic and morphological evidence in resolving cryptic flounder complexes and provide a basis for re-evaluating distribution records attributed to P. arsius across the Indo-Pacific.

 

References

  1. Amaoka, K. & Hensley, D.A. (2001) Paralichthyidae, Sand Flounders. In: Carpenter, K.E. & Niem, V.H. (Eds.), FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Vol. 6. FAO, Rome, pp. 3842–3862.
  2. Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  3. Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22 (3), 148–155. https://doi.org/10.1016/j.tree.2006.11.004
  4. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10 (4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537
  5. Britz, R. (2019) Francis Hamilton’s Gangetic Fishes in Colour. A New Edition of the 1822 Monograph, with Reproductions of Unpublished Coloured Illustrations. Ray Society, London, 48 + vii + 405 + vii pp., 228 pls.
  6. Claridge, A.W., Mifsud, G., Dawson, J. & Saxon, M.J. (2004) Use of infrared digital cameras to investigate the behaviour of cryptic species. Wildlife Research, 31 (6), 645–650. https://doi.org/10.1071/WR03072
  7. Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. https://doi.org/10.1186/1471-2148-7-214
  8. Fricke, R., Eschmeyer, W.N. & Van der Laan, R. (Eds.) (2025) Eschmeyer’s Catalog of Fishes: Genera, Species, References. California Academy of Sciences, San Francisco. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 22 January 2025)
  9. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.89m6gn (accessed 30 January 2025)
  10. Gray, J.E. (1834) Illustrations of Indian Zoology; Chiefly Selected from the Collection of Major-General Hardwicke, F.R.S. 20 parts in 2 vols. Treuttel, Wurtz, Treuttel, Jun. and Richter, London, 202 pls.
  11. Hamilton, F. (1822) An Account of the Fishes Found in the River Ganges and Its Branches. Hurst, Robinson, and Co, Edinburgh vii + 405 pp., 39 pls. https://doi.org/10.5962/bhl.title.59540
  12. Jawad, L.A. (2014) Study on the vertebral column of the large tooth flounder, Pseudorhombus arsius (Hamilton, 1822) collected from Oman Sea. Vietnam Journal of Marine Science and Technology, 14 (1), 32–39. https://doi.org/10.15625/1859-3097/14/1/4027
  13. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160–1166. https://doi.org/10.1093/bib/bbx108
  14. Khan, P., Ali, Q.M., Ahmed, Q. & Bat, L. (2023) Molecular characterization of demersal marine fish species Pseudorhombus arsius, Psettods erumei, and Cynoglossus cynoglossus from Sindh coasts of Pakistan through DNA barcodes. Journal of Materials and Environmental Science, 14 (2), 210–223.
  15. Knowlton, N. (1986) Cryptic and sibling species among the decapod Crustacea. Journal of Crustacean Biology, 6, 356–363. https://doi.org/10.2307/1548175
  16. Knowlton, N. (1993) Sibling species in the sea. Annual Review of Ecology and Systematics, 24, 189–216. https://doi.org/10.1146/annurev.es.24.110193.001201
  17. Leigh, J.W. & Bryant, D. (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
  18. Matsunuma, M., Kanai, S., Seah, Y. G., Tashiro, F., & Motomura, H. (2025) Resurrection of the five-ocellated left-eye flounder Pseudorhombus ocellifer Regan 1905 (Paralichthyidae), with redescriptions of Pseudorhombus pentophthalmus Günther 1862 and Pseudorhombus oculocirris Amaoka 1969. Ichthyological Research, 1–43.
  19. Mohapatra, A., Ho, H.C., Acharya, S., Ray, D. & Mishra, S.S. (2022) A new Congrid eel, Rhynchoconger smithi sp. nov. (Anguilliformes: Congridae), from the Bay of Bengal, India. Journal of Fish Biology, 100 (6), 1335–1344. https://doi.org/10.1111/jfb.15031
  20. Norman, J. R. (1927). The flatfishes (Heterosomata) of India, with a list of the specimens in the Indian Museum. Records of the Zoological Survey of India, 7–47.
  21. Nylander, J.A.A. (2004) MrModeltest. Version 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala. [program]
  22. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281
  23. Rambaut, A. (2012) FigTree. Version 1.4.0. Available from: http://tree.bio.ed.ac.uk/software/Figtree/ (accessed 16 September 2025)
  24. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
  25. Russell, P. (1803) Descriptions and Figures of Two Hundred Fishes Collected at Vizagapatam on the Coast of Coromandel. Vol. 1. East India Company, London, vii + 78 pp., Illustration No. I–C. https://doi.org/10.5962/bhl.title.140747
  26. Saez, A.G. & Lozano, E. (2005) Body doubles. Nature, 433, 111. https://doi.org/10.1038/433111a
  27. Schultz, E.T. & McCormick, S.D. (2012) Euryhalinity in an evolutionary context. Fish Physiology, 32, 477–533. https://doi.org/10.1016/B978-0-12-396951-4.00010-4
  28. Vrdoljak, J., Sánchez, K.I., González-Marín, A., Morando, M. & Avila, L.J. (2025) A straightforward workflow to explore species diversity using the Patagonian lizards of the Diplolaemus genus (Iguania: Leiosauridae) as a study case, with the description of a new species. Molecular Phylogenetics and Evolution, 204, 108274. https://doi.org/10.1016/j.ympev.2024.108274
  29. Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D.N. (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1462), 1847–1857. https://doi.org/10.1098/rstb.2005.1716

How to Cite

Acharya, S., Behera, R.K., Mohanty, S.R., Ray, D., Patro, S., Mishra, S.S. & Mohapatra, A. (2025) Resolving the Pseudorhombus arsius cryptic species complex (Teleostei, Paralichthyidae): phylogenetic evidence and description of Pseudorhombus bahudaensis sp. nov. Zootaxa, 5711 (3), 381–397. https://doi.org/10.11646/zootaxa.5711.3.4