Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-08-26
Page range: 5-48
Abstract views: 110
PDF downloaded: 4

Phenotypes, natural history and barcodes unveil cryptic species within the Caribbean Metalmark Dianesia carteri (Holland) (Lepidoptera: Riodinidae)

Instituto de Ecología y Sistemática; Carretera Varona km 3.5; Capdevila; Boyeros; CP11900; La Habana; Cuba.
Lepidoptera and Trichoptera Section; Leibniz Institute for the Analysis of Biodiversity Change– Museum Koenig; Bonn; 53113; Germany.
Laboratório de Ecologia e Sistemática de Borboletas; Departamento de Biologia Animal; Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas; SP; Brazil.
Florida Museum of Natural History; University of Florida; Gainesville; FL; U.S.A.
Laboratório de Ecologia e Sistemática de Borboletas; Departamento de Biologia Animal; Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas; SP; Brazil.
Lepidoptera and Trichoptera Section; Leibniz Institute for the Analysis of Biodiversity Change– Museum Koenig; Bonn; 53113; Germany.
Lepidoptera Integrative taxonomy species delimitation morphology ecology DNA

Abstract

The butterfly genus Dianesia Harvey & Clench, 1980 is the only known representative of the family Riodinidae in the West Indies with a single described species containing two subspecies, represented by rare, little-known populations occurring only in the Bahamas and Cuba. Until now, the genus has been regarded as monotypic, but differences in morphology, DNA barcodes and life history suggest that it contains multiple cryptic species. Our assessment led to recognize the existence of at least nine species within Dianesia: Dianesia carteri (Holland, 1902), Dianesia ramsdeni (Skinner, 1912) (previously regarded as a subspecies of the first), Dianesia galindoensis Barro, Hernández & Torres, 2025, and the newly herein described Dianesia aberrans sp. nov., Dianesia sheylae sp. nov., Dianesia alayoi sp. nov., Dianesia flammata sp. nov., Dianesia abscondita sp. nov. and Dianesia serpentinicola sp. nov. These species remained unnoticed due to their superficial resemblance and lack of information about their biology, but can be differentiated by a combination of their DNA barcodes, wing length and shape, and elements of the color pattern, particularly the forewing postdiscal white band. Genitalia, habitat, host plant, and larval morphology also serve to differentiate the species. Bayesian and maximum likelihood COI gene trees recovered a similar topology in which all species are reciprocally monophyletic except for D. alayoi nested inside D. flammata. Species delimitation analyses supported the described species, including those that are not monophyletic, and suggested the presence of three additional species, but we regard them as artifacts produced by specimens with slightly different barcodes. Future research employing more genetic and ecological data is necessary to clarify the relationships among these species, as well as to understand their biogeographical history, ecology, and behavior, and to provide baseline knowledge for their conservation.

 

References

  1. Alayo, P. & Hernández, L.R. (1987) Atlas de las mariposas diurnas de Cuba (Lepidoptera: Rhopalocera). Editorial Científico-Técnica, Havana, 148 pp.
  2. Álvarez, Y. & Yong, S. (2024) Paradise Unknown: Insights Into the Butterfly Fauna (Lepidoptera: Papilionoidea) of Caletón de Don Bruno, Cienfuegos Bay, Cuba. Caribbean Journal of Science, 54, 273–285. https://doi.org/10.18475/cjos.v54i2.a9
  3. Bates, M. (1935) The butterflies of Cuba. Bulletin of the Museum of Comparative Zoology of Harvard, 78, 63–258.
  4. Beccaloni, G.W., Viloria, A.L., Hall, S.K. & Robinson, G.S. (2008) Catalogue of the hostplants of the Neotropical butterflies. Sociedad Entomológica Aragonesa, Zaragoza, 536 pp.
  5. Bonhomme, V., Picq, S., Gaucherel, C. & Claude, J. (2014) Momocs: Outline Analysis Using R. Journal of Statistical Software, 56 (13), 1–14. https://doi.org/10.18637/jss.v056.i13
  6. Borhidi, A. (1991) Phytogeography and vegetation of Cuba. Akadémia Kiadó, Budapest, 856 pp.
  7. Callaghan, C.J. (1985) A preliminary revision of the genus Nymphidium (Rhopalocera, Riodinidae). Part I. Introduction. Mantus-Baoetia Complex. Bulletin of the Allyn Museum, 98, 1–22.
  8. Callaghan, C.J. (1986) A preliminary revision of the genus Nymphidium (Rhopalocera, Riodinidae). Part II. The azanoides Complex. Bulletin of the Allyn Museum, 100, 1–7.
  9. Callaghan, C.J. (1988) A preliminary revision of the genus Nymphidium (Rhopalocera, Riodinidae). Part III. The omois group. Bulletin of the Allyn Museum, 119, 1–6.
  10. Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Sayers, E.W. (2016) GenBank. Nucleic Acids Research, 44 (D1), D67–D72. https://doi.org/10.1093/nar/gkv1276
  11. Clench, H.K. (1977) Butterflies of the Carnegie Museum Bahamas Expedition, 1976. Annals of the Carnegie Museum, 46, 173–194. https://doi.org/10.5962/p.330528
  12. de Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56, 879–886. https://doi.org/10.1080/10635150701701083
  13. Doyle, J.J. & Doyle, J.L. (1987) A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19, 11–15.
  14. Dryden, I.L. & Mardia, K.V. (1998) Statistical shape analysis. John Wiley & Sons, New York, New York, 347 pp.
  15. Espeland, M., Hall, J.P., DeVries, P.J., Lees, D.C., Cornwall, M., Hsu, Y., Wu, L., Campbell, D.L., Talavera, G., Vila, R., Salzman, S., Ruehr, S., Lohman, D.J. & Pierce, N. (2015) Ancient Neotropical origin and recent recolonization: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution, 93, 296–306. https://doi.org/10.1016/j.ympev.2015.09.006
  16. Espeland, M., Breinholt, J., Willmott, K.R., Warren, A.D., Vila, R., Toussaint, E.F.A., Maunsell, S.C., Aduse-Poku, K., Talavera, G., Eastwood, R., Jarzyna, M.A., Guralnick, R., Lohman, D.J., Pierce, N.E. & Kawahara, A.Y. (2018) A Comprehensive and Dated Phylogeny Analysis of Butterflies. Current Biology, 28, 770–778. https://doi.org/10.1016/j.cub.2018.01.061
  17. Esnard, B.F., Bermúdez, F. & González, P.A. (2023) Primer reporte de las plantas hospederas de Dianesia carteri ramsdeni (Skinner, 1912) (Lepidoptera, Riodinidae) en Cuba y breve descripción de la oruga. Boletín de la Sociedad Entomológica Aragonesia (S.E.A.), 72, 163–165.
  18. Fedosov, A.E., Achaz, G., Gontchar, A. & Pulliandre, N. (2022) MOLD, a novel software to compile accurate and reliable DNA diagnoses for taxonomic descriptions. Molecular Ecology Resources, 22, 2038–2053. https://doi.org/10.1111/1755-0988.13590
  19. Fiedler, K. (1997) Life-history patterns of myrmecophilous butterflies and other insects: their implications on tropical species diversity. In: Ulrich, H. (Ed.), Tropical biodiversity and systematics. Proceedings of the international symposium on biodiversity and systematics in tropical ecosystems. Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn, pp. 71–92.
  20. González, L.R., Palmarola, A., González, L., Bécquer, E.R., Testé, E. & Barrios, D. (Eds.) (2016) Lista roja de la flora de Cuba, Bissea, 10 (Special Issue), pp. 1–352.
  21. González, P.A. (2014) Evolution and biogeography of Buxus L. (Buxaceae) in Cuba and the Caribbean. PhD Dissertation, University of Berlin, Berlin, 197 pp.
  22. Guindon, S., Dufayard, J., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59 (3), 307–321. https://doi.org/10.1093/sysbio/syq010
  23. Hall, J.P.W., Robbins, R.K. & Harvey, D.J. (2004) Extinction and biogeography in the Caribbean: new evidence from a fossil riodinid butterfly in Dominican amber. Proceedings of the Royal Society B, 271, 797–801. https://doi.org/10.1098/rspb.2004.2691
  24. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1), 1–9.
  25. Harvey, D.J. & Clench, H.K. (1980) Dianesia, a new genus of Riodinidae from the West Indies. Journal of the Lepidopterists’ Society, 34 (2), 127–132.
  26. Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
  27. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten Species in One: DNA Barcoding Reveals Cryptic Species in the Neotropical Skipper Butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, 101, 14812–14817. https://doi.org/10.1073/pnas.0406166101
  28. Heikkilä, M., Kaila, L., Mutanen, M., Peña, C. & Wahlberg, N. (2012) Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proceedings of the Royal Society B, 279, 1093–1099. https://doi.org/10.1098/rspb.2011.1430
  29. Hernández, L.R., Miller, L.D., Miller, J.Y., Simon, M.J. & Turner, T.W. (1998) New Records and Range Extensions of Butterflies from Eastern Cuba. Caribbean Journal of Science, 34, 324–327.
  30. Hernández, A.M., Torres, J., Amador, A.M., Holodick, N., Webster, S.E., Rodríguez-Mallon, A., Espinosa, G. & Barro, A. (2025) Genetic Diversity and Molecular Phylogenetic Support for a New Cryptic Species of Dianesia Harvey & Clench (1980) (Lepidoptera: Riodinidae) from Western Cuba. Caribbean Journal of Science, 55, 216–229. https://doi.org/10.18475/cjos.v55i1.a20
  31. Hinojosa, J.C., Tóth, J.P., Monasterio, Y., Sánchez, L., Muñoz, M.G., Escobés, R. & Vila, R. (2022) Integrative Taxonomy Reveals a New Melitaea (Lepidoptera: Nymphalidae) Species Widely Distributed in the Iberian Peninsula. Insect Systematics and Diversity, 6 (2), 1–9. https://doi.org/10.1093/isd/ixac004
  32. Holland, W.J. (1902) Two new species of Bahaman Lepidoptera. Annals of the Carnegie Museum, 1, 486–489. https://doi.org/10.5962/p.247233
  33. Huemer, P., Mutaten, M., Sefc, K.M. & Hebert, P.D.N. (2014) Testing DNA Barcode Performance in 1000 Species of European Lepidoptera: Large Geographic Distances Have Small Genetic Impacts. PLoS ONE, 9 (12), 1–21. https://doi.org/10.1371/journal.pone.0115774
  34. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  35. Kaminski, L.A. (2008) Immature Stages of Caria plutargus (Lepidoptera: Riodinidae), with Discussion on the Behavioral and Morphological Defensive Traits in Non-myrmecophilous Riodinid Butterflies. Annals of the Entomological Society of America, 101 (5), 906–914. https://doi.org/10.1603/0013-8746(2008)101[906:ISOCPL]2.0.CO;2
  36. Kaminski, L.A., Mota, L.L., Freitas, A.V.L. & Moreira, G.R.P. (2013) Two ways to be a myrmecophilous butterfly: natural history and comparative immature-stage morphology of two species of Theope (Lepidoptera: Riodinidae). Biological Journal of the Linnean Society, 108, 844–870. https://doi.org/10.1111/bij.12014
  37. Kaminski, L.A., Callaghan, C.J., Seraphim, N., Magaldi, L.M., Volkmann, L. & Freitas, A.V.F. (2017) Sertania gen. nov., a new genus of butterflies (Lepidoptera: Riodinidae) from the South Americal dry diagonal. Zootaxa, 4312 (1), 165–179. https://doi.org/10.11646/zootaxa.4312.1.8
  38. Kaminski, L.A., Volkmann, L., Callaghan, C.J., DeVries, P.J. & Vila, J. (2021) The first known riodinid ‘cuckoo’ butterfly reveals deep-time convergence and parallelism in ant social parasites. Biological Journal of the Linnean Society, 193, 860–879.
  39. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  40. Khan, M., Joshi, M., Espeland, M., Huemer, P., Lopez-Vaamonde, C. & Mutanen, M. (2024) Patterns of speciation in a parapatric pair of Saturnia moths as revealed by target capture. Molecular Ecology, 33 (1), e17194. https://doi.org/10.1111/mec.17194
  41. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W., Dollár, P. & Girshick, R. (2023) Segment Anything. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, 4015–4026. https://doi.org/10.1109/ICCV51070.2023.00371
  42. Köhler, E. (2014) Flora de la República de Cuba. Fascículo 19(1): Buxaceae. Koeltz Scientific Books, Königstein, 160 pp.
  43. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
  44. Lemes, J.R., Callaghan, C.J. & Kaminski, L.A. (2020) A new species of Aricoris Westwood, 1851 (Lepidoptera: Riodinidae) from the Neotropical Cerrado savanna. Zootaxa, 4786 (3), 409–416. https://doi.org/10.11646/zootaxa.4786.3.6
  45. Magaldi, L.M., Kaminski, L.A., Seraphim, N., Azeredo-Espin, A.M., Silva-Brandão, K.L. & Freitas, A.V.L. (2021) Hidden in the wing dots: Disentangling mimetic sister species of butterflies (Riodinidae: Stalachtis) with an integrative approach. Zoologischer Anzeiger, 294, 92–99. https://doi.org/10.1016/j.jcz.2021.07.009
  46. Magaldi, L.M., Gueratto, P.E., Ortega-Abboud, E., Sobral-Souza, T., Joron, M., de Souza, A.P., Freitas, A.V.L. & Silva-Brandão, K.L. (2024) Montane diversification as a mechanism of speciation in Neotropical butterflies. Ecology and Evolution, 14 (e11704), 1–15. https://doi.org/10.1002/ece3.11704
  47. Matos-Maraví, P.F., Núñez, R., Peña, C., Miller, J., Sourakov, A. & Wahlberg, N. (2014) Causes of endemic radiation in the Caribbean: evidence from the historical biogeography and diversification of the butterfly genus Calisto (Nymphalidae: Satyrinae: Satyrini). BCM Evolutionary Biology, 14, 199. https://doi.org/10.1186/s12862-014-0199-7
  48. Minh, B.Q., Nguyen, M.A.T. & von Haeseler, A. (2013) Ultrafast Approximation for Phylogenetic Bootstrap. Molecular Biology and Evolution, 30 (5), 1188–1195. https://doi.org/10.1093/molbev/mst024
  49. Minh, B.Q., Schmidt, H.A., Chermonor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37 (5), 1530–1534. https://doi.org/10.1093/molbev/msaa015
  50. Mota, L.L., Kaminski, L.A. & Freitas, A.V.L. (2014) Last instar larvae and pupae of Ourocnemis archytas and Anteros formosus (Lepidoptera: Riodinidae), with a summary of known host plants for the tribe Helicopini. Zootaxa, 3838 (4), 435–444. https://doi.org/10.11646/zootaxa.3838.4.3
  51. Mutaten, M., Kivela, S.M., Vos, R.A., Doorenweerd, C., Ratnasingham, S., Hausmann, A., Huemer, P., Dinca, V., van Nieukerken, E.J., Lopez-Vaamonde, C., Vila, R., Aarvik, L., Decaëns, T., Efetov, K.A., Hebert, P.D., Johnsen, A., Karsholt, O., Pentinsaari, M., Rougerie, R., Segerer, A., Tarmann, G., Zahiri, R. & Godfray, H.C. (2016) Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera. Systematic Biology, 65 (6), 1024–1040. https://doi.org/10.1093/sysbio/syw044
  52. Núñez, R. & Barro, A. (2016) Dianesia carteri ramsdeni (Skinner, 1912). In: Hidalgo-Gato, M.M., Espinosa, J. & Rodríguez-León, R. (Eds.), Libro Rojo de los Invertebrados Terrestres de Cuba. Editorial Academia, Havana, 244 pp.
  53. Núñez, R., Genaro, J.A., Pérez-Asso, A. & Hausmann, A. (2017) A new species of the hysius species-group of Calisto Hübner (Lepidoptera, Nymphalidae, Satyrinae) and insights into the status of different populations currently attributed to C. grannus Bates. Zootaxa, 4317 (1), 1–44. https://doi.org/10.11646/zootaxa.4317.1.1
  54. Núñez, R., Barro, A., Minno, M., Fernández, D.M. & Hausmann, A. (2019) The herophile species group of Calisto (Lepidoptera: Nymphalidae: Satyrinae), new taxa and historical biogeography. Invertebrate Systematics, 33, 644–660. https://doi.org/10.1071/IS18048
  55. Núñez, R., Barro, A., Álvarez, Y., Fernández, D.M. & Mancina, C.A. (2020) Riodinidae. In: Mancina, C.A., Núñez, R. & Neyra, B. (Eds,), Mariposas de Cuba: Guía de Campo. Editorial AMA, Havana, pp. 1–241.
  56. Núñez, R., Willmot, K.R., Álvarez, Y., Genaro, J.A., Pérez-Asso, A., Querejeta, M., Turner, T., Miller, J.Y., Brévignon, C., Lamas, G. & Hausmann, A. (2021) Integrative taxonomy clarifies species limits in the hitherto monotypic passion-vine butterfly genera Agraulis and Dryas (Lepidoptera, Nymphalidae, Heliconiinae). Systematic Entomology, 47, 152–178. https://doi.org/10.1111/syen.12523
  57. Pulliandre, N., Lambert, A., Broulliet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
  58. Pulliandre, N., Broulliet, S. & Achaz, G. (2020) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21 (2), 609–620. https://doi.org/10.1111/1755-0998.13281
  59. RStudio Team (2020) RStudio: Integrated Development for R. RStudio, Boston. Available from: http://www.rstudio.com/ (accessed 9 March 2025)
  60. Rambaut, A. (2016) FigTree v 1.4.3. Computer program and documentation distributed by the author. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 3 December 2024)
  61. Riley, N.D. (1975) A Field Guide to the Butterflies of the West Indies. Collins, London, 224 pp.
  62. Rohlf, F.J. (2006) TpsDig version 2.10. Available from: http://life.bio.sunysb.edu/morph (accessed 9 March 2025)
  63. Ronquist, F. & Huelsenbeck, J.P. (2003) Bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  64. Rosser, N., Freitas, A.V.L., Huertas, B., Joron, M., Lamas, G., Mérot, C., Simpson, F., Willmott, K.R., Mallet, J. & Dasmahapatra, K.K. (2019) Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies. Zoological Journal of the Linnean Society, 186 (1), 233–249. https://doi.org/10.1093/zoolinnean/zly046
  65. Seitz, A. (1924) The Macrolepidoptera of the World. Vol. 5. Alfred Kerner Verlag, Suttgart, 1139 pp.
  66. Seraphim, N., Marin, M.A., Freitas, A.V.L. & Silva-Brandão, K.L. (2013) Morphological and molecular marker contributions to disentangling the cryptic Hermeuptychia hermes species complex (Nymphalidae: Satyrinae: Euptychiina). Molecular Ecology Resources, 14 (1), 39–49. https://doi.org/10.1111/1755-0998.12161
  67. Seraphim, N., Kaminski, L.A., DeVries, P.J., Penz, C., Callaghan, C., Wahlberg, N., Silva-Brandão, K.L. & Freitas, A.V.L. (2018) Molecular phylogeny and higher systematics of the metalmark butterflies (Lepidoptera: Riodinidae). Systematic Entomology, 43, 407–425. https://doi.org/10.1111/syen.12282
  68. Silva-Brandão, K.L., Peruchi, A., Seraphim, N., Murad, N.F., Carvalho, R.A., Farias, J.R., Omoto, C., Cônsoli, F.L., Figueira, A. & Brandão, M.M. (2018) Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae). PLoS ONE, 13 (5), 1–28. https://doi.org/10.1371/journal.pone.0197378
  69. Skinner, H. (1912) Two new butterflies (Lepidoptera). Entomological News, 23 (3), 126–127.
  70. Smith, D.S., Miller, L.D. & Miller, J.Y. (1994) The Butterflies of the West Indies and South Florida. Oxford University Press, New York, 255 pp. https://doi.org/10.1017/S0266467400008555
  71. Sourakov, A. & Zakharov, E.V. (2011) “Darwin’s butterflies”? DNA barcoding and the radiation of the endemic Caribbean butterfly genus Calisto (Lepidoptera, Nymphalidae, Satyrinae). Comparative Cytogenetics, 5 (3), 191–210. https://doi.org/10.3897/CompCytogen.v5i3.1730
  72. Stichel, H. (1911) Family Riodinidae. In: Wytsman, P. (Ed,), Genera Insectorum. P. Wytsman, Brussels, 452 pp.
  73. Trujano-Ortega, M., García-Vázquez, U.O., Callaghan, C.J., Ávalos-Hernández, O., Luis-Martínez, M.A. & Llorente-Bousquets, J.E. (2018) Two new genera of metalmark butterflies of North and Central America (Lepidoptera: Riodinidae). ZooKeys, 729, 61–85. https://doi.org/10.3897/zookeys.729.20179
  74. Van Belleghem, S.M., Papa, R., Ortiz-Zuazaga, H., Hendrickx, F., Jiggins, C.D., McMillan, W.O. & Counterman, B.A. (2017) patternize: An R package for quantifying color pattern variation. Methods in Ecology and Evolution, 9 (2), 390–398. https://doi.org/10.1111/2041-210X.12853
  75. Warren, A., Davis, K.J., Strangeland, M., Pelham, J.P. & Grishin, N.V. (2025) Interactive list of American butterfies. Available from: http://butterfliesofamerica.com/ (accessed 9 March 2025)
  76. Zhang, J., Shen, J., Cong, Q. & Grishin, N.V. (2019) Genomic analysis of the tribe Emesidini (Lepidoptera: Riodinidae). Zootaxa, 4668 (4), 475–488. https://doi.org/10.11646/zootaxa.4668.4.2
  77. Zhang, J., Cong, G., Shen, J. & Grishin, N.V. (2022) Taxonomic changes suggested by the genomic analysis of Hesperiidae (Lepidoptera). Insecta Mundi, 921, 1–135.

How to Cite

Álvarez, Y., Núñez, R., Magaldi, L.D.M., Matthews, D., Freitas, A.V.L. & Espeland, M. (2025) Phenotypes, natural history and barcodes unveil cryptic species within the Caribbean Metalmark Dianesia carteri (Holland) (Lepidoptera: Riodinidae). Zootaxa, 5686 (1), 5–48. https://doi.org/10.11646/zootaxa.5686.1.2