Skip to main content Skip to main navigation menu Skip to site footer
Type: Monograph
Published: 2025-08-25
Page range: 1-78
Abstract views: 142
PDF downloaded: 6

A total evidence phylogenetic analysis of the spider family Linyphiidae (Araneae, Araneoidea)

Department of Biological Sciences; The George Washington University; Washington; D.C. 20052
CSIR-Centre for Cellular and Molecular Biology (CCMB). Hyderabad; Telangana; India
Department of Biological Sciences; The George Washington University; Washington; D.C. 20052
Araneae Orb weavers Neotropical Systematics Phylogenetics 28S ribosomal gene character evolution linyphiid tracheal anatomy linyphiid cephalothoracic pits

Abstract

Linyphiidae, with 634 genera and more than 4,800 species, is the most speciose family of Araneoidea, the ecribellate orb weavers. This study presents a phylogenetic hypothesis of linyphioids (Linyphiidae plus Pimoidae) using a large-scale total evidence approach. We include representatives of all traditional Linyphiidae subfamilies (Stemonyphantinae, Micronetinae, Mynogleninae, Linyphiinae, Erigoninae, Dubiaraneinae, and Ipainae) as well as newly proposed lineages (Mounded Posterior Median Eye (MPME) clade, Pocobletus clade). We integrated nucleotide sequence data from five different markers, two mitochondrial (cytochrome oxidase subunit I, 16S rRNA) and three nuclear (18S rRNA, 28S rRNA and Histone H3) with a set of morphological and behavioral characters. We allocated the character data into eleven different matrices to test the robustness of the phylogenetic signal in our dataset concerning data occupancy, data category, and data completeness across different optimality criteria. The molecular dataset has a total of 294 terminals and a total of 6,835 bps, and the phenotypic matrix has 105 terminals and 256 characters, totaling 305 terminals and 7091 characters. We analyzed our datasets using three different optimality criteria: parsimony, maximum likelihood, and Bayesian inference. We recovered linyphioids as a monophyletic group with strong support. We identified 15 suprageneric monophyletic groups within linyphiids (some of those corresponding to the established subfamilies) whose relationships vary according to the analytical conditions. The linyphiid subfamilies Stemonyphantinae, Erigoninae, and Mynogleninae are monophyletic and well-supported. We revised the circumscription of the subfamilies Lepthyphantinae, Linyphiinae, and the MPME clade to fulfill the monophyly requirement. The Pocobletus clade remains a strongly supported group with the same original composition and is formally recognized as a subfamily (Pocobletinae new subfamily). The subfamilies Dubiaraneinae, Ipainae, and Micronetinae are not monophyletic, and their components were placed into different clades. The remaining linyphiids are classified into the following newly proposed lineages: the ConoSur clade; Linyphiinae (new circumscription) composed of three lineages: Linyphia clade, Frontinella clade, and MPME clade; Clade A, composed of two lineages: the MCP (Marginal Cephalothoracic Pits) clade and Mynogleninae, plus an assorted grade of Australian taxa; and Clade B, composed of seven distinct lineages:, Centromerus clade, (Lepthyphantinae new circumscription), Agyneta clade, Microneta clade, and the subfamily Erigoninae. The genera Allomengea, Australolinyphia, Labulla, Labulinyphia, Laetesia, Laperousea, Palaeohyphantes, Solenysa, and Turinyphia are considered incertae sedis. Elaphopus is declared a nomen dubium and a type species is designated for Typhloneta. Significant differences between topologies and support values, including spurious trees, are interpreted as artifacts caused by the extreme disparity in fragment length on the 28S ribosomal marker in our dataset. Our new hypothesis allows the reinterpretation of the evolution of characters such as the cephalothoracic pits, Fickert’s gland and the tracheal system anatomy.

 

References

  1. Agnarsson, I. (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zoological Journal of the Linnean Society, 141, 447–626. https://doi.org/10.1111/j.1096-3642.2004.00120.x
  2. Agnarsson, I., Maddison, W.P. & Avilés, L. (2007) The phylogeny of the social Anelosimus spiders (Araneae: Theridiidae) inferred from six molecular loci and morphology. Molecular Phylogenetics and Evolution, 43, 833–851. https://doi.org/10.1016/j.ympev.2006.09.011
  3. Agnarsson, I. & Miller, J. (2008) Is ACCTRAN better than DELTRAN? Cladistics, 24 (6), 1032–1038. https://doi.org/10.1111/j.1096-0031.2008.00229.x
  4. Agnarsson, I., Coddington, J. & Kuntner, M. (2013) Systematics: Progress in the study of spider diversity and evolution. In: Penney, D. (Ed.), Spider Research in the 21st century: Trends and Perspectives. Siri Scientific Press, Manchester, pp. 58–111
  5. Álvarez-Padilla, F., Dimitrov, D., Giribet, G. & Hormiga, G. (2009) Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics, 25, 109–146. https://doi.org/10.1111/j.1096-0031.2008.00242.x
  6. Álvarez Padilla, F. & Hormiga, G. (2011) Morphological and phylogenetic atlas of the orb‐weaving spider family Tetragnathidae (Araneae: Araneoidea). Zoological Journal of the Linnean Society, 162, 713–879. https://doi.org/10.1111/j.1096-3642.2011.00692.x
  7. Arnedo, M. & Gillespie, R.G. (2006) Species diversification patterns in the Polynesian jumping spider genus Havaika Proszynski, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution, 41, 472–495
  8. Arnedo, M. & Hormiga, G. (2021) Repeated colonization, adaptive radiation and convergent evolution in the sheet-weaving spiders (Linyphiidae) of the South Pacific Archipelago of Juan Fernandez. Cladistics, 37 (3), 317–342. https://doi.org/10.1111/cla.12437
  9. Arnedo, M.A., Agnarsson, I. & Gillespie, R.G. (2007) Molecular insights into the phylogenetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna. Zoologica Scripta, 36, 337–352. https://doi.org/10.1111/j.1463-6409.2007.00280.x
  10. Arnedo, M.A., Coddington, J., Agnarsson, I. & Gillespie, R.G. (2004) From a comb to a tree: Phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 31, 225–245. https://doi.org/10.1016/S1055-7903(03)00261-6
  11. Arnedo, M., Scharff, N. & Hormiga, G. (2009) Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics, 25, 231–262. https://doi.org/10.1111/j.1096-0031.2009.00249.x
  12. Ballesteros, J.A. & Hormiga, G. (2018) Species delimitation of the North American orchard-spider Leucauge venusta (Walckenaer, 1841) (Araneae, Tetragnathidae). Molecular Phylogenetics and Evolution, 121, 183–197. https://doi.org/10.1016/j.ympev.2018.01.002
  13. Benjamin, S.P. & Hormiga, G. (2009) Phylogenetic placement of the enigmatic genus Labullinyphia van Helsdingen, 1985, with redescription of Labullinyphia tersa (Simon, 1894) from Sri Lanka (Araneae: Linyphiidae). Contributions to Natural History, 12, 161–181
  14. Benjamin, S.P. & Zschokke, S. (2004) Homology, behavior and spider webs: web construction behavior of Linyphia hortensis and L. triangularis (Araneae Linyphiidae) and its evolutionary significance. Journal of Evolutionary Biology, 17, 120–130. https://doi.org/10.1046/j.1420-9101.2004.00667.x
  15. Benjamin, S.P., Dimitrov, D., Gillespie, R.G. & Hormiga, G. (2008) Family ties: Molecular phylogeny of crab spiders (Araneae: Thomisidae). Cladistics, 24, 708–722. https://doi.org/10.1111/j.1096-0031.2008.00202.x
  16. Bertkau, P. (1878) Uber die mechanische Kraft, die bei der Begattung der Spinnen das; Sperma aus dem den Samen enthaltenden Schlauch heraustreibt. Verhandlungen des Naturhistorischen Vereins der Preussischen Rheinlande und Westfalens, 35, 171
  17. Blackwall, J. (1859) Descriptions of newly discovered spiders captured by James Yate Johnson Esq., in the island of Madeira. Annals and Magazine of Natural History, Series 3, 4 (22), 255–267. https://doi.org/10.1080/00222935908697122
  18. Blest, A.D. (1976) The tracheal arrangement and the classification of linyphiid spiders. Journal of Zoology, London, 180, 185–194. https://doi.org/10.1111/j.1469-7998.1976.tb04672.x
  19. Blest, A.D. & Taylor, H.H. (1977) The clypeal glands of Mynoglenes and of some other linyphiid spiders. Journal of Zoology, 183, 473–493. https://doi.org/10.1111/j.1469-7998.1977.tb04200.x
  20. Blest, A.D. & Pomeroy, G. (1978) The sexual behaviour and genital mechanics of three species of Mynoglenes (Araneae: Linyphiidae). Journal of Zoology, 185, 319–340. https://doi.org/10.1111/j.1469-7998.1978.tb03336.x
  21. Blest, A.D. (1979) The spiders of New Zealand. Part V. Linyphiidae-Mynoglenidae. Otago Museum Bulletin, 5, 95–173.
  22. Bond, J.E. & Stockman, A.K. (2008) An integrative method for delimiting cohesion species: Finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Systematic Biology, 57, 628–646. https://doi.org/10.1080/10635150802302443
  23. Bond, J.E., Garrison, N.L., Hamilton, C.A., Godwin, R.L., Hedin, M. & Agnarsson, I. (2014) Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Current Biology, 24, 1765–1771. https://doi.org/10.1016/j.cub.2014.06.034
  24. Bremer, K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795–803. https://doi.org/10.1111/j.1558-5646.1988.tb02497.x
  25. Bristowe, W.S. (1931) The mating habits of spiders: a second supplement, with the description of a new thomisid from Krakatau. Proceedings of the Zoological Society of London, 4, 1401–1412. https://doi.org/10.1111/j.1096-3642.1931.tb01070.x
  26. Bristowe, W.S. (1958) The World of Spiders. Collins, London, 304 pp.
  27. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. & Madden, T. (2009) BLAST+: architecture and applications. BMC Bioinformatics, 10, 421. https://doi.org/10.1186/1471-2105-10-421
  28. Capella-Gutiérrez, S., Silla-Martínez, J. & Gabaldón, T. (2009) trimAl: a tool for alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  29. Coddington, J.A. (1990a) Cladistics and spider classification: Araneomorph phylogeny and the monophyly of orb weavers (Araneae: Araneomorphae; Orbiculariae). Acta Zoologica Fennica, 190, 75–87
  30. Coddington, J.A. (1990b) Ontogeny and homology in the male palpus of orb-weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea). Smithsonian Contributions to Zoology, 496, 1–52. https://doi.org/10.5479/si.00810282.496
  31. Coddington, J.A. & Levi, H.W. (1991) Systematics and Evolution of Spiders (Araneae). Annual Review of Ecology and Systematics, 22, 565–592. https://doi.org/10.1146/annurev.ecolsys.22.1.565
  32. Cracraft, J. (2002) The seven great questions of systematic biology: an essential foundation for conservation and the sustainable use of biodiversity. Annals of the Missouri Botanical Garden, 89, 127–144. https://doi.org/10.2307/3298558
  33. Dederichs, T.M., Müller, C.H.G., Sentenská, L., Lipke, E., Uhl, G. & Michalik, P. (2019) The innervation of the male copulatory organ of spiders (Araneae)–A comparative analysis. Frontiers In Zoology, 16 (1), 1–14. https://doi.org/10.1186/s12983-019-0337-6
  34. Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M.A., Álvarez-Padilla, F. & Hormiga, G. (2012) Tangled in a sparse spider web: single origin of orb weavers and their spinning work unraveled by denser taxonomic sampling. Proceedings of the Royal Society (Biological Sciences), 1–10. https://doi.org/10.1098/rspb.2011.2011
  35. Dimitrov, D., Benavides, L.R., Arnedo, M.A., Giribet, G., Griswold, C.E., Scharff, N. & Hormiga, G. (2017) Rounding up the usual suspects: a standard target‐gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb‐weaving spiders with a new family‐rank classification (Araneae, Araneoidea). Cladistics, 33, 221–250. https://doi.org/10.1111/cla.12165
  36. Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. https://doi.org/10.1186/1471-2148-7-214
  37. Dunlop, J.A., Penney, D. & Jekel, D. (2014) A summary list of fossil spiders and their relatives. In: Platnick, N.I. (Ed.) The world spider catalog. Version 14.5. American Museum of Natural History, New York City, New York. Available from: http://research.amnh.org/entomology/spiders/catalog/index.html (accessed 24 June 2025)
  38. Duperré, N. (2013) Taxonomic revision of the spider genera Agyneta and Tennesseellum (Araneae, Linyphiidae) of North America north of Mexico with a study of the embolic division within Micronetinae sensu Saaristo and Tanasevitch 1996. Zootaxa, 3674 (1), 001–189. https://doi.org/10.11646/zootaxa.3674.1.1
  39. Eberhard, W.G. & Huber, B.A. (2010) Spider genitalia: precise maneuvers with a numb structure in a complex lock. In: Leonard, J.L. & Córdoba-Aguilar, A. (Eds.), Evolution of primary sexual characters in animals. Oxford University Press, Oxford, pp. 249–284
  40. Eberhard, W.G. (2009) Evolution of genitalia: theories, evidence, and new directions. Genetica, 138, 5–18. https://doi.org/10.1007/s10709-009-9358-y
  41. Escoubas, P., Diochout, S. & Corzo, G. (2000) Structure and pharmacology of spider venom neurotoxins. Biochimie, 2000, 893–907. https://doi.org/10.1016/S0300-9084(00)01166-4
  42. Evenhuis, N.L. (2007) Helping Solve the “Other” Taxonomic Impediment: Completing the Eight Steps to Total Enlightenment and Taxonomic Nirvana. Zootaxa, 1407 (1), 3–12. https://doi.org/10.11646/zootaxa.1407.1.2
  43. Fage, L. (1919) Biospelogica XL. Etudes sur les araignées cavernicoles. III. Sur le genre Troglohyphantes. Archives de Zoologie Expérimentale et Générale, 58, 55–148, pls. 2–8
  44. Fernandes-Pedrosa, M.D.F., Junqueira-de Azevedo, I.D.L.M., Gonçalves de Andrade, R.M., Kobashi, L.S., Almeida, D.D., Ho, P.L. & Tambourgi, D.V. (2008) Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics, 9, 279. https://doi.org/10.1186/1471-2164-9-279
  45. Fernández, R., Kallal, R.J., Dimitrov, D., Ballesteros, J.A., Arnedo, M.A., Giribet, G. & Hormiga, G. (2018) Phylogenomics, lineage diversification dynamics and comparative transcriptomics across the Spider Tree of life. Current Biology, 28, 1489–1497. https://doi.org/10.1016/j.cub.2018.03.064
  46. Fitch, W.M. (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology, 20, 404–416. https://doi.org/10.2307/2412116
  47. Frick, H., Nentwig, W. & Kropf, C. (2010) Progress in erigonine spider phylogeny—the Savignia-group is not monophyletic (Araneae: Linyphiidae). Organisms Diversity and Evolution, 10, 297–310. https://doi.org/10.1007/s13127-010-0023-1
  48. Frick, H. & Scharff, N. (2014) Phantoms of Gondwana?—phylogeny of the spider subfamily Mynogleninae (Araneae: Linyphiidae). Cladistics, 30 (1), 67–10667. https://doi.org/10.1111/cla.12025
  49. Gavish-Regev, E., Hormiga, G. & Scharff, N. (2013) Pedipalp sclerite homologies and phylogenetic placement of the spider genus Stemonyphantes (Linyphiidae, Araneae) and its implications for linyphiid phylogeny. Invertebrate Systematics, 27 (1), 38–52. https://doi.org/10.1071/IS12014
  50. Gertsch, W.J. & Davies, L.I. (1946) Report on a collection of spiders from Mexico. V. American Museum Novitates, 1313, 1–11
  51. Gerhardt, U. (1923) Weitere sexualbiologische Untersuchung an Spinnen. Archiv für Naturgeschichte, 89A, 1–225
  52. Gillespie, R.G. (1999) Comparison of Rates of Speciation in Web-Building and Non-Web-Building Groups within a Hawaiian Spider Radiation. Journal of Arachnology, 27, 79–85
  53. Gillespie, R.G., Croom, H.B. & Palumbi, S.R. (1994) Multiples origins of a spider radiation in Hawaii. Proceedings of the National Academy of Sciences, USA, 91, 2290–2294. https://doi.org/10.1073/pnas.91.6.2290
  54. Goloboff, P.A., Farris, J.S., Källersjö, M., Oxelman, B. & Ramírez, M.J. (2003) Improvements to resampling measures of group support. Cladistics, 19, 324–332. https://doi.org/10.1111/j.1096-0031.2003.tb00376.x
  55. Goloboff, P. & Catalano, S. (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32, 221–238. https://doi.org/10.1111/cla.12160
  56. Goloboff, P., Torres, A. & Arias, J.S. (2018) Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics, 34, 407–437. https://doi.org/10.1111/cla.12205
  57. Grant, T. & Kluge, A.G. (2008a) Clade support measures and their adequacy. Cladistics, 24, 1051–1064. https://doi.org/10.1111/j.1096-0031.2008.00231.x
  58. Grant, T. & Kluge, A.G. (2008b) Credit where credit is due: The Goodman-Bremer support metric. Molecular Phylogenetics and Evolution, 49, 405–406. https://doi.org/10.1016/j.ympev.2008.04.023
  59. Griswold, C.E., Coddington, J.A., Hormiga, G. & Scharff, N. (1998) Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zoological Journal of the Linnean Society, 123, 1–99. https://doi.org/10.1111/j.1096-3642.1998.tb01290.x
  60. Griswold, C.E., Ramírez, M.J., Coddington, J.A. & Platnick, N.I. (2005) Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proceedings of the California Academy of Sciences, 56 (Supplement II), 1–324
  61. Hamilton, C.A., Lemmon, A.R., Lemmon, E.M. & Bond, J.E. (2016) Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evolutionary Biology, 16, 212. https://doi.org/10.1186/s12862-016-0769-y
  62. Harvey, M. (2002) The Neglected cousins: What do we know about the smaller arachnid orders? The Journal of Arachnology, 30, 357–372. https://doi.org/10.1636/0161-8202(2002)030[0357:TNCWDW]2.0.CO;2
  63. Hausdorf, B. (2001) Molecular phylogeny of araneomorph spiders. Journal of Evolutionary Biology, 12, 980–985. https://doi.org/10.1046/j.1420-9101.1999.00104.x
  64. Hayashi, C.Y. (1996) Molecular Systematics of Spiders: Evidence from Ribosomal DNA. Ph.D. Thesis, Yale University, New Haven, Connecticut. [unknown pagination]
  65. Hazzi, N.A. & Hormiga, G. (2022) Molecular phylogeny of the tropical wandering spiders (Araneae, Ctenidae) and the evolution of eye conformation in the RTA clade. Cladistics, 39 (1), 18–42. https://doi.org/10.1111/cla.12518
  66. Hedin, M.C. (1997a) Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): Inferences from geographic-based sampling. Evolution, 51, 1929–1945. https://doi.org/10.1111/j.1558-5646.1997.tb05115.x
  67. Hedin, M.C. (1997b) Molecular phylogenetics and the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus). Molecular Biology and Evolution, 14, 309–332. https://doi.org/10.1093/oxfordjournals.molbev.a025766
  68. Hedin, M., Derkarabetian, S., Ramírez, M.J., Vink, C. & Bond, J.E. (2018) Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Scientific Reports, 8, 1636. https://doi.org/10.1186/s12862-016-0769-y
  69. Heiss, A., Park, D. & Joel, A.-C. (2018) The calamistrum of the feather-legged spider Uloborus plumipes investigated by FIB-SEM tomography. Microscopy and Microanalysis, 24, 139–146. https://doi.org/10.1017/S1431927618000132
  70. Hennig, W. (1957) Systematik und Phylogenese. In: Hannemann, H.-J. (Ed.), Bericht über die Hundertjahrfeier der Deutschen Entomologischen Gesellschaft Belin. Akademie Verlag, Berlin, pp. 50–71. https://doi.org/10.1515/9783112551080-005
  71. Hennig, W. (1966) Phylogenetic Systematics. University Illinois Press, Urbana, IL
  72. Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35 (2), 518–522. https://doi.org/10.1093/molbev/msx281
  73. Holt, B.G., Lessard, J.P., Borregaard, M.K., Fritz, S.A., Araújo, M.B., Dimitrov, D., Fabre, P.H., Graham, C.H., Graves, G.R., Jønsson, K.A., Nogués-Bravo, D., Wang, Z., Whittaker, R.J., Fjeldså, J. & Rahbek, C. (2013) An update of Wallace’s zoogeographic regions of the world. Science, 339, 74–78. https://doi.org/10.1126/science.1228282
  74. Hormiga, G. (1994a) A revision and cladistic analysis of the spider family Pimoidae (Araneoidea: Araneae). Smithsonian Contributions to Zoology, 549, 1–104. https://doi.org/10.5479/si.00810282.549
  75. Hormiga, G. (1994b) Cladistics and the comparative morphology of linyphiid spiders and their relatives (Araneae, Araneoidea, Linyphiidae). Zoological Journal of the Linnean Society, 111, 1–71. https://doi.org/10.1111/j.1096-3642.1994.tb01491.x
  76. Hormiga, G. (2000) Higher level phylogenetics of erigonine spiders (Araneae, Linyphiidae, Erigoninae). Smithsonian Contributions to Zoology, 609, 1–160. https://doi.org/10.5479/si.00810282.609
  77. Hormiga, G. (2002) Orsonwelles, a new genus of giant linyphiid spiders (Araneae) from the Hawaiian islands. Invertebrate Systematics, 16, 369–448. https://doi.org/10.1071/IT01026
  78. Hormiga, G. (2003) Weintrauboa, a new genus of pimoid spiders from Japan and adjacent islands, with comments on the monophyly and diagnosis of the family Pimoidae and the genus Pimoa (Araneoidea, Araneae). Zoological Journal of the Linnean Society, 139, 261–281. https://doi.org/10.1046/j.1096-3642.2003.00072.x
  79. Hormiga, G., Arnedo, M.A. & Gillespie, R.G. (2003) Speciation on a conveyor belt: sequential colonization of the Hawaiian Islands by Orsonwelles spiders (Araneae, Linyphiidae). Systematic Biology, 52, 70–88. https://doi.org/10.1080/10635150309347
  80. Hormiga, G., Buckle, D.J. & Scharff, N. (2005) Nanoa, an enigmatic new genus of pimoid spiders from western North America (Pimoidae, Araneae). Zoological Journal of the Linnean Society, 145, 249–262. https://doi.org/10.1111/j.1096-3642.2005.00192.x
  81. Hormiga, G. & Tu, L. (2008) On Putaoa, a new genus of the spider family Pimoidae (Araneae) from China, with a cladistic test of its monophyly and phylogenetic placement. Zootaxa, 1792 (1), 1–21. https://doi.org/10.11646/zootaxa.1792.1.1
  82. Hormiga, G. & Griswold, C.E. (2014) Systematics, phylogeny and evolution of orb-weaving spiders. Annual Review of Entomology, 59, 487–512. https://doi.org/10.1146/annurev-ento-011613-162046
  83. Hormiga, G., Kulkarni, S., Silva-Moreira, T. & Dimitrov, D. (2021) Molecular phylogeny of pimoid spiders and the limits of Linyphiidae, with a reassessment of male papal homologies (Araneae, Pimoidae). Zootaxa, 5026 (1), 071–101. https://doi.org/10.11646/zootaxa.5026.1.3
  84. Huber, B.A., Eberle, J. & Dimitrov, D. (2018) The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae). ZooKeys, 789, 51–101. https://doi.org/10.3897/zookeys.789.22781
  85. Hull, J.E. (1920) The spider family Linyphiidae: an essay in taxonomy. The Vasculum, 6, 7–11
  86. Irfan, M. & Peng, X.J. (2019) Herbiphantes Tanasevitch, 1992 and Labullinyphia van Helsdingen, 1985 (Araneae, Linyphiidae), two newly recorded spider genera from the Gaoligong Mountains in China with the description of two new species. Zootaxa, 4638 (4), 547–561. https://doi.org/10.11646/zootaxa.4638.4.5
  87. Kallal, R. & Hormiga, G. (2018a) An expanded phylogeny of metaine spiders (Araneae, Tetragnathidae) with descriptions of new metaine and leucaugine taxa from Taiwan and the Philippines. Invertebrate Systematics, 32, 400–422. https://doi.org/10.1071/IS17058
  88. Kallal, R. & Hormiga, G. (2018b) Systematics, phylogeny, and biogeography of the Australasian leaf-curling orb-weaving spiders (Araneae: Araneidae: Zygiellinae), with a comparative analysis of retreat evolution. Zoological Journal of the Linnean Society, 184, 1055–1141. https://doi.org/10.1093/zoolinnean/zly014
  89. Kallal, R., Fernández, R., Giribet, G. & Hormiga, G. (2018) A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches. Molecular Phylogenetics and Evolution, 126, 129–140. https://doi.org/10.1016/j.ympev.2018.04.007
  90. Kallal, R., Kulkarni, S., Dimitrov, D., Benavides, L., Arnedo, M., Giribet, G. & Hormiga, G. (2021) Converging on the orb: denser taxon sampling elucidates spider phylogeny, and new analytical methods support repeated evolution of the orb web. Cladistics, 37 (3), 298–316. https://doi.org/10.1111/cla.12439
  91. Kalyaanamoorthy, S., Minh, B., Wong, T., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  92. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  93. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  94. Kulkarni, S., Kallal, R.J., Wood, H., Dimitrov, D., Giribet, G. & Hormiga, G. (2021) Interrogating genomic-scale data to resolve recalcitrant nodes in the Spider Tree of Life. Molecular Biology and Evolution, 38 (3), 891–903. https://doi.org/10.1093/molbev/msaa251
  95. Kulkarni, S., Wood, H. & Hormiga, G. (2023) Advances in the reconstruction of the spider tree of life: a roadmap for spider systematics and comparative studies. Cladistics, 39 (6), 479–532. https://doi.org/10.1111/cla.12557
  96. Kuntner, K., Hamilton, C.A., Cheng, R.C., Gregoric, M., Lupse, N., Lokovsek, T., Emily Lemmon, E., Lemmon, A., Agnarsson, I., Coddington, J.A. & Bond, J.E. (2018) Golden Orbweavers Ignore Biological Rules: Phylogenomic and Comparative Analyses Unravel a Complex Evolution of Sexual Size Dimorphism. BioRxiv. [published online] https://doi.org/10.1101/368233
  97. Kunz, K., Garbe, S. & Uhl, G. (2012) The function of the secretory cephalic hump in males of the dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae). Animal Behaviour, 83, 511–517. https://doi.org/10.1016/j.anbehav.2011.11.028
  98. Kunz, K., Michalik, P. & Uhl, G. (2013) Cephalic secretion release in the male dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae): An ultrastructural analysis. Arthropod Structure and Development, 42, 477–482. https://doi.org/10.1016/j.asd.2013.09.002
  99. Kulczyński, W. (1914) Aranearum species novae minusve cognitae, in montibus Kras dictis a Dre C. Absolon aliisque collectae. Bulletin International de l’Academie des Sciences de Cracovie, 1914, 353–387, pl. 16
  100. Labarque, F., Wolff, J.O., Michalik, P., Griswold, C.E. & Ramírez, M. (2017) The evolution and function of spider feet (Araneae: Arachnida): multiple acquisitions of distal articulations. Zoological Journal of the Linnean Society, 181, 308–341. https://doi.org/10.1093/zoolinnean/zlw030
  101. Lamy, E. (1902) Recherches anatomiques sur les trachees des Araignees. Annales des Sciences. Naturelles. (Zoologie.), 15, 149–280
  102. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260
  103. Legendre, R. & Lopez, A. (1974) Etude histologique de quelques formations glandularies chez les araignees du genre Argyrodes (Theridiidae) et description d’un nouveau type de glande: la glande clypeale des males. Bulletin de la Société zoologique de France, 99, 453–460
  104. Legendre, R. & Lopez, A. (1975) Ultrastructure de la glande clypeale des males d’Araignees appartenant au genre Argyrodes (Theridiidae). Comptes rendus hebdomadaires des séances de l’Académie des sciences, 281, 101–1103
  105. Lehtinen, P.T. (1967) Classification of the cribellate spiders and some allied families. Annales Zoologici Fennici, 4, 199–468
  106. Lehtinen, P.T. & Saaristo, M.I. (1970) Principles in limiting supraspecific taxa of Linyphiidae. Bulletin du Museum National d’Histoire Naturélle, 41, 155–160
  107. Lehtinen, P.T. & Saaristo, M.I. (1972) Tallusia gen. n. (Araneae, Linyphiidae). Annales Zoologici Fennici, 9, 265–268
  108. Lin, S.W., Lopardo, L. & Uhl, G. (2022) Evolution of nuptial-gift-related male prosomal structures: taxonomic revision and cladistic analysis of the genus Oedothorax (Araneae: Linyphiidae: Erigoninae). Zoological Journal of the Linnean Society, 195 (2), 417–584, Supplement figs. S1–S5. https://doi.org/10.1093/zoolinnean/zlab033
  109. Lipke, E., Hammel, J.U. & Michalik, P. (2015) First evidence of neurons in the male copulatory organ of a spider (Arachnida, Araneae). Biology Letters, 11, 20150465. https://doi.org/10.1098/rsbl.2015.0465
  110. Locket, G.H. & Millidge, A.F. (1953) British spiders. Vol. II. Ray Society, London, 449 pp.
  111. Lopardo, L. & Hormiga, G. (2008) Phylogenetic placement of the Tasmanian spider Acrobleps hygrophilus (Araneae, Anapidae) with comments on the evolution of the capture web in Araneoidea. Cladistics, 24, 1–33. https://doi.org/10.1111/j.1096-0031.2007.00173.x
  112. Lopardo, L. & Hormiga, G. (2015) Out of the twilight zone: phylogeny and evolutionary morphology of the orb‐weaving spider family Mysmenidae, with a focus on spinneret spigot morphology in symphytognathoids (Araneae, Araneoidea). Zoological Journal of the Linnean Society, 173 (3), 527–786. https://doi.org/10.1111/zoj.12199
  113. Löytynoja, A. & Goldman, N. (2008) Phylogeny-Aware Gap Placement Prevents Errors in Sequence Alignment and Evolutionary Analysis. Science, 320, 632–1635. https://doi.org/10.1126/science.1158395
  114. Maes, L., Vanacker, D., Sylvia, P. & Maelfait, J-P. (2004) Comparative study of courtship and copulation in five Oedothorax species. Belgian Journal of Zoology, 134, 29–35
  115. Makowsky, R., Marshall, J.C., McVay, J., Chippindale, P.T. & Rissler, L.J. (2010) Phylogeographic analysis and environmental niche modeling of the plain-bellied watersnake (Nerodia erythrogaster) reveals low levels of genetic and ecological differentiation. Molecular Phylogenetics and Evolution, 55, 985–995. https://doi.org/10.1016/j.ympev.2010.03.012
  116. Maddison, W.P. & Maddison, D.R. (2018) Mesquite: a modular system for evolutionary analysis. Version 3.51. Available from: http://mesquiteproject.org (accessed 24 June 2025)
  117. Maddison, W.P., Evans, S.C., Hamilton, C.A., Bond, J.E., Lemmon, A.R. & Lemmon, E.M. (2017) A genome-wide phylogeny of jumping spiders (Araneae, Salticidae), using anchored hybrid enrichment. Zookeys, 2017, 89–101. https://doi.org/10.3897/zookeys.695.13852
  118. Maes, L., Vanacker, D., Pardo, S. & Maelfait, J.P. (2004) Comparative study of courtship and copulation in five Oedothorax species. Belgian Journal of Zoology, 134, 29–35
  119. Mello-Leitão, C.F. de (1943) Catálogo das aranhas do Rio Grande do Sul. Arquivos do Museu Nacional do Rio de Janeiro, 37, 147–245, 24 pls.
  120. Menge, A. (1869) Preussische Spinnen. III. Abtheilung. Schriften der Naturforschenden Gesellschaft in Danzig, N.F., 2, 219–264
  121. Menge, A. (1879) Preussische Spinnen. X. Fortsetzung; XI. Fortsetzung und Schluss. Schriften der Naturforschenden Gesellschaft in Danzig, N.F., 4, 495–542
  122. Merrett, P. (1963) The Palpus of Male Spiders of the Family Linyphiidae. Proceedings of the Zoological Society of London, 140, 347–467. https://doi.org/10.1111/j.1469-7998.1963.tb01867.x
  123. Merrett, P. (1965) The palpal organs of Acartauchenius scurrilis and Syedra gracilis (Araneae: Linyphiidae). Journal of Zoology, London, 146, 467–469. https://doi.org/10.1111/j.1469-7998.1965.tb05220.x
  124. Michalik, P. & Hormiga, G. (2010) Ultrastructure of the spermatozoa in the spider genus Pimoa: new evidence for the monophyly of Pimoidae plus Linyphiidae (Arachnida: Araneae). American Museum Novitates, 190, 1–17. https://doi.org/10.1206/680.1
  125. Michalik, P., Knoflach, B., Thaler, K. & Alberti, G. (2010) Live for the moment - Adaptations in the male genital system of a sexually cannibalistic spider (Theridiidae, Araneae). Tissue and Cell, 42, 32–36. https://doi.org/10.1016/j.tice.2009.06.004
  126. Michalik, P. & Uhl, G. (2011) Cephalic modifications in dimorphic dwarf spiders of the genus Oedothorax (Erigoninae, Linyphiidae, Araneae) and their evolutionary implications. Journal of Morphology, 272, 814–832. https://doi.org/10.1002/jmor.10950
  127. Michalik, P. & Ramírez, M.J. (2014) Evolutionary morphology of the male reproductive system, spermatozoa and seminal fluid of spiders (Araneae, Arachnida)–Current knowledge and future directions. Arthropod Structure and Development, 43, 291–322. https://doi.org/10.1016/j.asd.2014.05.005
  128. Miller, J.A. (2007) Review of Erigonine spider genera in the Neotropics (Araneae: Linyphiidae, Erigoninae). Zoological Journal of the Linnean Society, 149, 1–263. https://doi.org/10.1111/j.1096-3642.2007.00233.x
  129. Miller, J.A. & Hormiga, G. (2004) Clade stability and the addition of data–a case study from erigonine spiders (Araneae: Linyphiidae, Erigoninae). Cladistics, 20, 385–442. https://doi.org/10.1111/j.1096-0031.2004.00033.x
  130. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, Louisiana, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
  131. Millidge, A.F. (1977) The Conformation of the Male Palpal Organs of Linyphiid Spiders and Its Application to the Taxonomic and Phylogenetic Analysis of the Family (Araneae: Linyphiidae). Bulletin of the British Arachnological Society, 4, 1–60
  132. Millidge, A.F. (1978) The genera Saaristoa n. gen. and Metapanamomops Millidge (Araneae: Linyphiidae). Bulletin of the British Arachnological Society, 4, 123
  133. Millidge, A.F. (1984) The Taxonomy of the Linyphiidae, Based Chiefly on the Epigynal and Tracheal Characters (Araneae: Linyphiidae). Bulletin of the British Arachnological Society, 6, 229–267
  134. Millidge, A.F. (1985) Some Linyphiid Spiders from South America (Araneae: Linyphiidae). American Museum Novitates, 2836, 1–78
  135. Millidge, A.F. (1986) A Revision of the Tracheal Structures of the Linyphiidae (Araneae). Bulletin of the British Arachnological Society, 7, 57–61
  136. Millidge, A.F. (1988) The Relatives of the Linyphiidae: Phylogenetic Problems at the Family Level (Araneae). Bulletin of the British Arachnological Society, 7, 253–268
  137. Millidge, A.F. (1991) Further Linyphiid Spiders (Araneae) from South America. Bulletin of the American Museum of Natural History, 205, 1–199
  138. Millidge, A.F. (1993) Further Remarks on the Taxonomy and Relationships of the Linyphiidae, Based on the Epigynal Duct Conformation and Other Characters (Araneae). Bulletin of the British Arachnological Society, 9, 145–156
  139. Murphy, N.P., Framenau, V.W., Donnellan, S.C., Harvey, M.S., Park, Y.-C. & Austin, A.D. (2006) Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: Implications for classification, biogeography, and the evolution of web building behavior. Molecular Phylogenetics and Evolution, 38, 583–602. https://doi.org/10.1016/j.ympev.2005.09.004
  140. Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1), 268–274. https://doi.org/10.1093/molbev/msu300
  141. Nyffeler, M. & Birkhofer, K. (2017) An estimated 400–800 million tons of prey are annually killed by the global spider community. The Science of Nature, 104, 3–30. https://doi.org/10.1007/s00114-017-1440-1
  142. Oi, R. (1960) Linyphiid spiders of Japan. Journal of the Institute of Polytechnics Osaka City University, 11, 137–244
  143. Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
  144. Petrunkevitch, A. (1911) A synonymic index-catalogue of spiders of North, Central and South America with all adjacent islands, Greenland, Bermuda, West Indies, Terra del Fuego, Galapagos, etc. Bulletin of the American Museum of Natural History, 29, 1–791. https://doi.org/10.5962/bhl.title.23819
  145. Petrunkevitch, A. (1928) Systema Aranearum. Transactions of the Connecticut Academy of Arts and Sciences, 29, 1–270
  146. Piacentini, L.N. & Ramírez, M.J. (2019) Hunting the wolf: a molecular phylogeny of the wolf spiders (Araneae, Lycosidae). Molecular Phylogenetics and Evolution, 136, 227–240. https://doi.org/10.1016/j.ympev.2019.04.004
  147. Pickard-Cambridge, F.O. (1902) Arachnida - Araneida and Opiliones. Biologia Centrali-Americana, Zoology, 2, 313–424
  148. Platnick, N.I. (1993c) Advances in spider taxonomy 1988–1991, with synonymies and transfers 1940–1980. The New York Entomological Society, New York, New York, 846 pp.
  149. Platnick, N.I. (1999) Dimensions of Biodiversity: Targeting Megadiverse Groups. In: Cracraft, J. & Grifo, F.T. (Eds.), The Living Planet in Crisis. Biodiversity, Science and Policy. Columbia University Press, New York, New York, pp. 33–52.
  150. Platnick, N.I. & Forster, R.R. (1989) A revision of the temperate South American and Australasian spiders of the family Anapidae (Araneae, Araneoidea). Bulletin of the American Museum of Natural History, 190, 1–139
  151. Platnick, N.I. & Forster, R.R. (1990) On the spider family Anapidae (Araneae, Araneoidea) in the United States. Journal of the New York Entomological Society, 98, 108–112
  152. Price, M., Dehal, P. & Arkin, A. (2010) FastTree 2–approximately maximum likelihood trees for large alignments. PLoS ONE, 5, e9490. https://doi.org/10.1371/journal.pone.0009490
  153. Prószyński, J. & Staręga, W. (1971) Pająki-Aranei. Katalog Fauny Polski, 33, 1–382
  154. Pyron, R.A. & Burbrink, F.T. (2009) Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake, Lampropeltis getula. Molecular Ecology, 18, 3443–3457. https://doi.org/10.1111/j.1365-294X.2009.04292.x
  155. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032
  156. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 31 March 2020)
  157. Ramirez, M.J. (2014) The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae). Bulletin of the American Museum of Natural History, 2014, 1–374. https://doi.org/10.1206/821.1
  158. Raven, P.H. & Williams, T. (Eds.) (1997) Nature and Human Society: The Quest for a Sustainable World. National Academy of Sciences and National Research Council, Washington, D.C., 644 pp.
  159. Rodrigues, E.N.L. & Ott, R. (2010) On the Neotropical spider genus Eurymorion (Araneae: Linyphiidae). Zoologia, Curitiba, 27, 649–659. https://doi.org/10.1590/S1984-46702010000400013
  160. Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1752–1754. https://doi.org/10.1093/bioinformatics/btg180
  161. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  162. Roewer, C.F. (1942) Katalog der Araneae von 1758 bis 1940. 1. Band (Mesothelae, Orthognatha, Labidognatha: Dysderaeformia, Scytodiformia, Pholciformia, Zodariiformia, Hersiliaeformia, Argyopiformia). Natura, Buchhandlung für Naturkunde und exakte Wissenschaften Paul Budy, Bremen, 1040 pp.
  163. Rix, M.G., Wood, H.M., Harvey, M.S. & Michalik, P. (2021) Micro-computed tomography reveals a remarkable twin intromittent organ in spiders–a novelty for arachnids with direct sperm transfer. Frontiers in Ecology and Evolution, 9, 794708. https://doi.org/10.3389/fevo.2021.794708
  164. Saaristo, M.I. (1971) Revision of the genus Maro O. P.-Cambridge (Araneae, Linyphiidae). Annales Zoologici Fennici, 8, 463–482
  165. Saaristo, M.I. (1973a) Delimitation of the subfamily Lepthyphantinae (Araneae, Linyphiidae) according to the secondary genital organs. Annales Zoologici Fennici, 10, 388–391
  166. Saaristo, M.I. (1973b) Taxonomical analysis of the type-species of Agyneta, Anomalaria, Meioneta, Aprolagus and Syedrula (Araneae, Linyphiidae). Annales Zoologici Fennici, 10, 451–466
  167. Saaristo, M.I. (1974) Taxonomical analysis of Microneta viaria (Blackwall, 1841), the type-species of the genus Microneta Menge, 1869 (Araneae, Linyphiidae). Annales Zoologici Fennici, 11, 166–169
  168. Saaristo, M.I. (1975) On the evolution of the secondary genital organs of Lepthyphantinae (Araneae, Linyphiidae). Proceedings of the 6th International Arachnological Congress, pp. 21–25
  169. Saaristo, M.I. (1977) Secondary genital organs in the taxonomy of Lepthyphantinae (Araneae, Linyphiidae). Reports from the Department of Zoology, University of Turku, 5, 1–16
  170. Saaristo, M.I. (1995) Linyphiid spiders of the granitic islands of Seychelles (Araneae, Linyphiidae). Phelsuma, 3, 41–52
  171. Saaristo, M.I. (1996) Notes on the Japanese species of the genera Tapinopa and Floronia (Arachnida: Araneae: Linyphiidae: Micronetinae). Acta Arachnologica, 45, 1–6. https://doi.org/10.2476/asjaa.45.1
  172. Saaristo, M.I. (2007) A new subfamily of linyphiid spiders based on a new genus created for the keyserlingi-group of the genus Lepthyphantes (Aranei: Linyphiidae). Arthropoda Selecta, 16, 33–42
  173. Saaristo, M.I., Tu, L.H. & Li, S.Q. (2006) A review of Chinese micronetine species (Araneae: Linyphiidae). Part I: species of ex-Arcuphantes and ex-Centromerus. Animal Biology, 56, 383–401. https://doi.org/10.1163/157075606778441886
  174. Saaristo, M.I. & Tanasevitch, A.V. (1993) Notes on the systematics of the spider genus Lepthyphantes Menge (Aranei Linyphiidae Micronetinae). Arthropoda Selecta, 2, 55–61
  175. Saaristo, M.I. & Tanasevitch, A.V. (1996a) Three new Lepthyphantes Menge, 1866, from Iran and Turkey (Aranei Linyphiidae). Arthropoda Selecta, 4, 61–64
  176. Saaristo, M.I. & Tanasevitch, A.V. (1996b) Redelimitation of the subfamily Micronetinae Hull, 1920 and the genus Lepthyphantes Menge, 1866 with descriptions of some new genera (Aranei, Linyphiidae). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck, 83, 163–186
  177. Saaristo, M.I. & Tanasevitch, A.V. (1999) Reclassification of the mughi-group of the genus Lepthyphantes Menge, 1866 (sensu lato) (Araneae: Linyphiidae: Micronetinae). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck, 86, 139–147
  178. Saaristo, M.I. & Tanasevitch, A.V. (2003) Helsdingenia gen. n., a new micronetid genus from Old-World tropics (Aranei: Linyphiidae: Micronetinae). Arthropoda Selecta, 11, 153–158
  179. Saupe, E.E., Papes, M., Selden, P.A. & Vetter, R.S. (2011) Tracking a Medically Important Spider: Climate Change, Ecological Niche Modeling, and the Brown Recluse (Loxosceles reclusa). PLoS ONE, 6, e17731. https://doi.org/10.1371/journal.pone.0017731
  180. Schaible, U. & Gack, C. (1987) Zur Morphologie, Histologie und biologischen Bedeutung der Kopfstrukturen einiger Arten der Gattung Diplocephalus (Araneida, Linyphiidae, Erigoninae). Jahrbücher des Nassauischen Vereins für Naturkunde Hamburg, 29, 171–180
  181. Schaible, U., Gack, C. & Paulus, H.F. (1986) Zur Morphologie, Histologie und biologischen Bedeutung der Kopfstrukturen männlicher Zwergspinnen (Linyphiidae: Erigoninae). Zoologische Jahrbücher (Systematik), 113, 389–408
  182. Scharff, N. (1990a) Spiders of the family Linyphiidae from the Uzungwa mountains, Tanzania (Araneae). Entomologica Scandinavica Supplement, 36, 1–95
  183. Scharff, N. (1990b) A catalogue of African Linyphiidae (Araneae). Steenstrupia, 16, 117–152
  184. Scharff, N. (1992) The linyphiid fauna of Eastern Africa (Araneae, Linyphiidae)–distribution patterns, diversity and endemism. Biological Journal of the Linnean Society, 45, 117–154. https://doi.org/10.1111/j.1095-8312.1992.tb00635.x
  185. Scharff, N. & Gudik-Sørensen, O. (2006) Katalog over Danmarks edderkopper (Araneae) ⁄ Catalogue of the Spiders of Denmark (Araneae). Entomologiske Meddelelser, 74, 3–71
  186. Schütt, K. (2003) Phylogeny of Symphytognathidae s.1 (Araneae, Araneoidea). Zoologica Scripta, 32, 129–151. https://doi.org/10.1046/j.1463-6409.2003.00103.x
  187. Sentenská, L., Müller, C.H.G., Pekár, S. & Uhl, G. (2017) Neurons and a sensory organ in the pedipalps of male spiders reveal that it is not a numb structure. Scientific Reports, 7, 12209. https://doi.org/10.1038/s41598-017-12555-5
  188. Silva-Moreira, T. & Hormiga, G. (2015) Redescription and phylogenetic placement of the Hispaniolan spider genus Lomaita, Bryant 1948 (Araneae, Linyphiidae). Zootaxa, 3920 (2), 249–264. https://doi.org/10.11646/zootaxa.3920.2.2
  189. Silva-Moreira, T. & Hormiga, G. (2021) Systematics of the Neotropical spider genera Jalapyphantes and Selenyphantes and the circumscription of the Pocobletus clade (Araneae: Linyphiidae). Zoological Journal of the Linnean Society, 192 (3), 896–957. https://doi.org/10.1093/zoolinnean/zlaa124
  190. Silva-Moreira, T. & Hormiga, G. (2022) Revision and phylogenetics of the Neotropical sheet weaving spider genus Diplothyron Millidge, 1991 (Araneae, Linyphiidae) and systematics of the MPME clade. Invertebrate Systematics, 36 (9), 781–848. https://doi.org/10.1071/IS21047
  191. Simon, E. (1884) Les arachnides de France. Tome Cinquième, Deuxième et Troisième partie. Tome V. 2nd & 3rd Parts. Roret, Paris, 705 pp. [pp. 180–885]
  192. Simon, E. (1894) Histoire naturelle des araignées. Deuxième édition, tome premier. Roret, Paris, 272 pp. [pp. 489–760]
  193. Simon, E. (1926) Les arachnides de France. Synopsis générale et catalogue des espèces françaises de l’ordre des Araneae. Tome VI. 2e partie. Roret, Paris, 224 pp. [pp. 309–532]
  194. Simon, E. (1929) Les arachnides de France. Synopsis générale et catalogue des espèces françaises de l’ordre des Araneae. Tome VI. 3e partie. Roret, Paris, 240 pp. [pp. 533–772]
  195. Simon, C. (2022) An Evolving View of Phylogenetic Support. Systematic Biology, 71 (4), 921–928. https://doi.org/10.1093/sysbio/syaa068
  196. Simmons, M. & Ochoterena, H. (2000) Gaps as Characters in Sequence-Based Phylogenetic Analyses. Systematic Biology, 49, 369–381. https://doi.org/10.1093/sysbio/49.2.369
  197. Stamatakis, A. (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  198. Sukumaran, J. & Holder, M.T. (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics, 26 (12), 1569–1571. https://doi.org/10.1093/bioinformatics/btq228
  199. Sun, N., Marusik, Y.M. & Tu, L. (2014) Acanoides gen. n., a new spider genus from China with a note on the taxonomic status of Acanthoneta Eskov & Marusik, 1992 (Araneae, Linyphiidae, Micronetinae). ZooKeys, 375, 75–99. https://doi.org/10.3897/zookeys.375.6116
  200. Tanasevitch, A.V. (1984) [New species of spiders of the genus Agyneta Hull, 1911 (Aranei, Linyphiidae) from Siberia and central Asia]. Nauchnye Doklady Vyssheĭ Shkoly, Biologicheskie Nauki, 1984, 47–53
  201. Tanasevitch, A.V. (1986) New and little-known species of Lepthyphantes Menge 1866 from the Soviet Union (Arachnida: Araneae: Linyphiidae). Senckenbergiana Biologica, 67, 137–172
  202. Tanasevitch, A.V. (1987) The spider genus Lepthyphantes Menge 1866 in Nepal (Arachnida: Araneae: Linyphiidae). Courier Forschungsinstitut Senckenberg, 93, 43–64
  203. Tanasevitch, A.V. (1992) New genera and species of the tribe Lepthyphantini (Aranei Linyphiidae Micronetinae) from Asia (with some nomenclatorial notes on linyphiids). Arthropoda Selecta, 1, 39–50
  204. Tanasevitch, A.V. (2025) Linyphiid spiders of the world. Available from: http://old.cepl.rssi.ru/bio/tan/linyphiidae/ (accessed 31 March 2025)
  205. Tu, L. & Hormiga, G. (2011) Phylogenetic analysis and revision of the linyphiid spider genus Solenysa (Araneae: Linyphiidae: Erigoninae). Zoological Journal of the Linnean Society, 161, 484–530. https://doi.org/10.1111/j.1096-3642.2010.00640.x
  206. Van Helsdingen, P.J. (1968) Comparative notes on the species of the Holartic genus Stemonyphantes Menge (Araneida, Linyphiidae). Zoologische Mededelingen, 43, 117–139
  207. Van Helsdingen, P.J. (1969) A Reclassification of the Species of Linyphia Latreille, Based on the Functioning of the Genitalia (Araneida, Linyphiidae), I. Zoologische Verhandelingen, Leiden, 105, 1–303
  208. Van Helsdingen, P.J. (1970) A Reclassification of the Species of Linyphia Latreille, Based on the Functioning of the Genitalia (Araneida, Linyphiidae), II. Zoologische Verhandelingen, Leiden, 111, 1–86
  209. Van Helsdingen, P.J. (1973) A recapitulation of the Nearctic species of Centromerus Dahl (Araneida, Linyphiidae) with remarks on Tunagyna debilis (Banks). Zoologische Verhandelingen, 124, 3–45
  210. Van Helsdingen, P.J. (1974) The affinities of Wubana and Allomengea with some notes on the latter genus (Araneae, Linyphiidae). Zoologische Mededelingen, 46, 295–321
  211. Van Helsdingen, P.J. (1982) Quelques remarques sur les Linyphiidae mentionnés par Di Caporiacco. Revue Arachnologique, 3, 155–180
  212. Van Helsdingen, P.J. (1985) Araneae: Linyphiidae of Sri Lanka, with a note on Erigonidae. Entomologica Scandinavica Supplement, 30, 13–30
  213. Wang, F., Ballesteros, J.A., Hormiga, G., Chesters, D., Zhang, Y.J., Sun, N., Zhu, C.D., Chen, W. & Tu, L.H. (2015) Resolving the phylogeny of a speciose spider group, the family Linyphiidae (Araneae). Molecular Phylogenetics and Evolution, 91, 135–149. https://doi.org/10.1016/j.ympev.2015.05.005
  214. Wheeler, W.C., Coddington, J.A., Crowley, L.M., Dimitrov, D., Goloboff, P.A., Griswold, C.E., Hormiga, G., Prendini, L., Ramírez, M.J., Sierwald, P., Almeida-Silva, L., Álvarez-Padilla, F., Arnedo, M.A., Benavides Silva, L.R., Benjamin, S.P., Bond, J.E., Grismado, C.J., Hasan, E., Hedin, M., Izquierdo, M.A., Labarque, F.M., Ledford, J., Lopardo, L., Maddison, W.P., Miller, J.A., Piacentini, L.N., Platnick, N.I., Polotow, D., Silva-Dávila, D., Scharff, N., Szűts, T., Ubick, D., Vink, C.J. & Wood, H.M. (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33, 574–616. https://doi.org/10.1111/cla.12182
  215. Wiehle, H. (1956) Spinnentiere oder Arachnoidea. X. 28. Familie Linyphiidae. Die Tierwelt Deutschlands, 44, 1–337
  216. Wiehle, H. (1960) Spinnentiere oder Arachnoidea (Araneae). XI. Micryphantidae-Zwergspinnen. Die Tierwelt Deutschlands, 47, 1–620
  217. Wood, H.M., Gonzalez, V.L., Lloyd, M., Coddington, J. & Scharff, N. (2018) Next-generation museum genomics: Phylogenetic relationships among palpimanoid spiders using sequence capture techniques (Araneae: Palpimanoidea). Molecular Phylogenetics and Evolution, 127, 907–918. https://doi.org/10.1016/j.ympev.2018.06.038
  218. World Spider Catalog (2025) World Spider Catalog Version 25.0. Natural History Museum Bern, Bern. Available from: http://wsc.nmbe.ch (accessed 30 April 2025) https://doi.org/10.24436/2
  219. Wunderlich, J. (1986) Spinnenfauna gestern und heute: Fossile Spinnen in Bernstein und ihre heute lebenden Verwandten. Quelle and Meyer, Wiesbaden. [unknown pagination]
  220. Zhao, Q. & Li, S. (2017) Callosa gen. n., a new troglobitic genus from southwest China (Araneae, Linyphiidae). ZooKeys, 703, 109–128. https://doi.org/10.3897/zookeys.703.13641
  221. Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas, Austin, Texas. [unknown pagination]

How to Cite

Silva-Moreira, T.D., Kulkarni, S. & Hormiga, G. (2025) A total evidence phylogenetic analysis of the spider family Linyphiidae (Araneae, Araneoidea). Zootaxa, 5685 (1), 1–78. https://doi.org/10.11646/zootaxa.5685.1.1