Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-07-29
Page range: 451-475
Abstract views: 602
PDF downloaded: 518

Resolving the conflictive phylogenetic relationships of Oceanites (Oceanitidae: Procellariiformes) with the description of a new species

Centro Bahía Lomas; Facultad de Ciencias; Universidad Santo Tomás; Chile; Red de Observadores de Aves y Vida Silvestre de Chile; Santiago; Chile
Red de Observadores de Aves y Vida Silvestre de Chile; Santiago; Chile
Red de Observadores de Aves y Vida Silvestre de Chile; Santiago; Chile; Oikonos Ecosystem Knowledge. P.O. Box 1918; Kailua HI 96734; USA
Red de Observadores de Aves y Vida Silvestre de Chile; Santiago; Chile
Northern New Zealand Seabird Trust; 174 Ti Point Road; RD5; Warkworth; 0985; New Zealand
Department of Zoology; University of Otago; Dunedin; New Zealand
Northern New Zealand Seabird Trust; 174 Ti Point Road; RD5; Warkworth; 0985; New Zealand
Departamento de Zoología; Facultad de Ciencias Naturales y Oceanográficas; Universidad de Concepción; Chile; Universidad Católica de Santa María; Arequipa; Perú
Aves evolution storm-petrels systematics taxonomy

Abstract

The family Oceanitidae, formerly considered a subfamily of Hydrobatidae, includes all the small storm-petrels of the southern hemisphere. The ancestor-descendent relationships and evolutionary history of one of its genera, Oceanites, have been partially studied, yielding contrasting results. We revised the phylogenetic relationships of this group using Bayesian inference (BI) based on new sequence data of the mitochondrial gene Cytb and linear morphological measurements of all species and five subspecies-level taxa in Oceanites, including a new taxon from the Chilean Andes. Our BI results show that the Oceanites genus is monophyletic and composed of four well-supported clades (posterior probability > 0.95): (1) chilensis; (2) exasperatus; (3) gracilis, pincoyae, and barrosi sp. nov.; and (4) oceanicus and galapagoensis. The species O. chilensis is a basal clade within Oceanites. According to our time-calibrated tree, the split between Oceanites and the other genera in Family Oceanitidae is estimated to be ~35.9 Mya, and the oldest divergence within Oceanites (the split between O. chilensis and other Oceanites) was dated to the early Miocene, around c. 21.3 Mya. The most probable geographic origin of Oceanites is the Southern Ocean. The morphological data suggest continuous size variation between Oceanites taxa, ranging from smallest in gracilis to largest in exasperatus. Based on our phylogenetic hypothesis, and morphological analyses, we suggest elevating to species status the taxa galapagoensis, chilensis, and exasperatus, and we describe a new taxon barrosi sp. nov., thus recognizing a total of seven species within the genus Oceanites.

 

References

  1. Barros, R. (2017) ¿Por qué aparecen golondrinas de mar en la cordillera de Chile central? La Chiricoca, 22, 4–18.
  2. Barros, R., Medrano, F., Silva, R., Schmitt, F., Manilarich, V., Terán, D., Peredo, R., Pinto, C., Vallverdú, A., Fuchs, J. & Norambuena, H.V. (2020) Breeding sites, distribution and conservation status of the White-vented Storm-petrel (Oceanites gracilis) in the Atacama Desert. Ardea, 108 (2), 203–212. https://doi.org/10.5253/arde.v108i2.a7
  3. Beck, J.R. & Brown, D.W. (1972) The biology of Wilson’s Storm Petrel, Oceanites oceanicus (Kuhl), at Signy Island, South Orkney Islands. British Antarctic Survey Scientific Report, 69, 1–54.
  4. Bourne, W.R.P. (1964a) On the occurrence and nomenclature of certain petrels in North America. Bulletin of the British Ornithologists’ Club, 84, 114–116.
  5. Bourne, W.R.P. (1964b) Observations of sea-birds. Sea Swallow, 16, 9–40.
  6. Budaev, S.V. (2010). Using principal components and factor analysis in animal behaviour research: caveats and guidelines. Ethology, 116 (5), 472–480. https://doi.org/10.1111/j.1439-0310.2010.01758.x
  7. Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York, New York, 514 pp.
  8. Cibois, A., Thibault, J.-C., LeCroy, M. & Bretagnolle, V. (2015) Molecular analysis of a storm petrel specimen from the Marquesas Islands, with comments on specimens of Fregetta lineata and F. guttata. Bulletin of the British Ornithologists’ Club, 135, 240–246.
  9. Clements, J.F., Rasmussen, P.C., Schulenberg, T.S., Iliff, M.J., Fredericks, T.A., Gerbracht, J.A., Lepage, D., Spencer, A., Billerman, S.M., Sullivan, B.L. & Wood, C.L. (2023) The eBird/Clements Checklist of Birds of the World. Version 2023. Available from: https://www.birds.cornell.edu/clementschecklist/download/ (accessed 24 June 2024)
  10. Cracraft, J. (1985) Historical biogeography and patterns of differentiation within the South American avifauna: Areas of endemism. Ornithological Monographs, 36, 49–84. https://doi.org/10.2307/40168278
  11. Costello, M.J., Tsai, P., Wong, P.S., Cheung, A., Basher, Z. & Chaudhary, C. (2017) Marine biogeographic realms and species endemicity. Nature Communications, 8, 1057. https://doi.org/10.1038/s41467-017-01121-2
  12. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9 (8), 772. https://doi.org/10.1038/nmeth.2109
  13. Dickinson, E.C. & Christidis, L. (2015) The Howard and Moore Complete Checklist of the Birds of the World. Vol. 1. A & C Black, London, 461 pp.
  14. De Queiroz, K. (1998) The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In: Howard, D.J. & Berlocher, S.H. (Eds.), Endless Forms: Species and Speciation. Oxford University Press, New York, New York, pp. 57–75.
  15. De Queiroz, K. (1999) The general lineage concept of species and the defining properties of the species category. In: Wilson, R.A. (Ed.), Species: New interdisciplinary essays. MIT Press, Cambridge, Massachusetts, pp. 49–89. https://doi.org/10.7551/mitpress/6396.003.0007
  16. De Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56 (6), 879–886. https://doi.org/10.1080/10635150701701083
  17. Drucker, J., Carboneras, C., Jutglar, F. & Kirwan, G.M. (2020) Wilson’s Storm-Petrel (Oceanites oceanicus). Version 1.0. In: Billerman, S.M. (Ed.), Birds of the World. Cornell Lab of Ornithology, Ithaca, New York. https://doi.org/10.2173/bow.wispet.01
  18. Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29 (8), 1969–1973. https://doi.org/10.1093/molbev/mss075
  19. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5), 1792–1797. https://doi.org/10.1093/nar/gkh340
  20. Elliot, D.G. (1859) Descriptions of six new species of birds. Ibis, 1 (4), 391–395. https://doi.org/10.1111/j.1474-919X.1859.tb06218.x
  21. Falla, R.A. (1937) B.A.N.Z Antarctic Research expedition 1929-1931. Reports—Series B, Vol. II. Birds. B.A.N.Z.A.R. Expedition Committee, Adelaide, 228 pp.
  22. Fetzner Jr., J.W. (1999) Extracting high-quality DNA from shed reptile skins: a simplified method. Biotechniques, 26 (6), 1052–1054. https://doi.org/10.2144/99266bm09
  23. Forbes, W.A. (1882) Report on the anatomy of the petrels (Tubinares), collected during the voyage of H.M.S. Challenger. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology 4. Neill & Co., Edinburgh, 64 pp. https://doi.org/10.5962/bhl.title.13863
  24. Gould, J. (1841) Thalassidroma nereis. Proceedings of the Zoological Society of London, 8 (95), 178.
  25. Gould, J. (1844) On the family Procellaridae, with descriptions of ten new species. Annals and Magazine of Natural History, 13, 360–368. https://doi.org/10.1080/03745484409442618
  26. Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C.K., Braun, E.L., Braun, M.J., Chojnowski, J.L., Cox, W.A., Han, K., Harshman, J., Huddleston, C.J., et al. (2008) A phylogenomic study of birds reveals their evolutionary history. Science, 320, 1763–1768. https://doi.org/10.1126/science.1157704
  27. Harrison, P., Sallaberry, M., Gaskin, C.P., Baird, K.A., Jaramillo, A., Metz, S.M., Pearman, M., O’Keeffe, M., Dowdall, J., Enright, S., Fahy, K., Gilligan, J. & Lillie, G. (2013) A new storm-petrel species from Chile. Auk, 130 (1), 180–191. https://doi.org/10.1525/auk.2012.12071
  28. Howell, S.N.G. & Schmitt, F. (2016) Pincoya Storm Petrel: comments on identification and plumage variation. Dutch Birding, 38 (6), 384–388.
  29. Howell, S.N. & Zufelt, K. (2019) Oceanic Birds of the World: a Photo Guide. Princeton University Press, Princeton, New Jersey, 360 pp. https://doi.org/10.1515/9780691197012
  30. International Commission on Zoological Nomenclature (1999) International Code of Zoological Nomenclature. Fourth edition. International Trust for Zoological Nomenclature, London, 336 pp.
  31. Kuhl, H. (1820) Beitrage zur zoologie vergleichenden anatomie. Verlag der Hermannschen Buchhandlung, Frankfurt, 384 pp.
  32. Kennedy, M. & Page, R.D. (2002) Seabird supertrees: combining partial estimates of procellariiform phylogeny. Auk, 119 (1), 88–108. https://doi.org/10.1093/auk/119.1.88
  33. Landis, M.J., Matzke, N.J., Moore, B.R. & Huelsenbeck, J.P. (2013) Bayesian analysis of biogeography when the number of areas is large. Systematic Biology, 62, 789–804. https://doi.org/10.1093/sysbio/syt040
  34. Latham, J. (1790) Index Ornithologicus, Sive Systema Ornithologiae: Complectens Avium Divisionem in Classes, Ordines, Genera, Species, Ipsarumque Varietates. Leigh & Sotheby, London, 488 pp. https://doi.org/10.5962/bhl.title.131313
  35. Lowe, P.R. (1921) Description of a new petrel (Oceanites gracilis galapagoensis) from Charles I., Galapagos. Bulletin of the British Ornithologists’ Club, 46, 6.
  36. Nunn, G.B. & Stanley, S.E. (1998) Body size effects and rates of cytochrome b evolution in tube-nosed seabirds. Molecular Biology and Evolution, 15, 1360–1371. https://doi.org/10.1093/oxfordjournals.molbev.a025864
  37. Mathews, G.M. (1912) The Birds of Australia. Vol. II. Witherby & Co., London, 236 pp.
  38. Mathews, G.M. (1934) A check-list of the Order Procellariiformes. Novitates Zoologicae 39, 151–206.
  39. Matzke, N.J. (2012) Founder-event speciation in BioGeoBears package dramatically improves likelihoods and alters parameter inference in dispersal-extinction-cladogenesis DEC analyses. Frontiers of Biogeography, 4, 210.
  40. Medrano, F., Carboneras, C., Jutglar, F., Kirwan, G.M. & Sharpe, C.J. (2021) Elliot’s Storm-Petrel (Oceanites gracilis), version 2.0. In: Schulenberg, T.S. & Keeney, B.K. (Eds.), Birds of the World. Cornell Lab of Ornithology, Ithaca, New York. https://doi.org/10.2173/bow.wvspet1.02
  41. Moodley, Y., Masello, J.F., Cole, T.L., Calderon, L., Munimanda, G.K., Thali, M.R. & Quillfeldt, P. (2015) Evolutionary factors affecting the cross‐species utility of newly developed microsatellite markers in seabirds. Molecular Ecology Resources, 15 (5), 1046–1058. https://doi.org/10.1111/1755-0998.12372
  42. Murphy, R.C. & Beck, R.H. (1918) A study of the Atlantic Oceanites. Bulletin of the American Museum of Natural History, 38 (4), 117–146.
  43. Murphy, R.C. (1936) Oceanic Birds of South America. Vol. II. American Museum of Natural History, New York, New York, 1245 pp.
  44. Onley, D. & Scofield, P. (2007) Albatrosses, Petrels and Shearwaters of the World. Christopher Helm, London, 240 pp.
  45. Pacha, A.S., Pande, A., Arya, S., Saini, S., Sivakumar, K. & Mondol, S. (2023) New insights on the phylogeny and genetic status of a highly vagile seabird from East Antarctica. Polar Science, 38, 100972. https://doi.org/10.1016/j.polar.2023.100972
  46. Palma, R.L, Gaskin, C.P. & Jaramillo, A. (2012a) The scientific name, author, and date for the “Fuegian storm-petrel”, a subspecies of Oceanites oceanicus from southern South America. Notornis, 59, 74–78.
  47. Palma, R.L, Gaskin, C.P. & Jaramillo, A. (2012b) A correction to Palma et al. (2012) on the nomenclature of the Fuegian storm-petrel, Oceanites oceanicus chilensis. Notornis, 59, 187–188.
  48. Pearman, M. (2000) Primeros registros del Paiño de Elliot (Oceanites gracilis) en la Argentina. Hornero, 15, 141–143. https://doi.org/10.56178/eh.v15i2.935
  49. Pett, M.A., Lackey, N.R. & Sullivan, J.J. (2003) Making Sense of Factor Analysis: the Use of Factor Analysis for Instrument Development in Health Care Research. SAGE Publications, Thousand Oaks, California, 368 pp. https://doi.org/10.4135/9781412984898
  50. Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Lemmon, E.M. & Lemmon, A.R. (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526, 569–573. https://doi.org/10.1038/nature15697
  51. Rambaut, A. & Drummond, A.J. (2009) Tracer. Version 1.5. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 4 July 2019)
  52. Reddy, S., Kimball, R.T., Pandey, A., Hosner, P.A., Braun, M.J., Hackett, S.J., Han, K., Harshman, J., Huddleston, C.J., Kingston, S., Marks, B.D., Miglia, K.J., Moore, W.S., Sheldon, F.H., Witt, C.C., Yuri, T. & Braun, E.L. (2017) Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Systematic Biology, 66, 857–879. https://doi.org/10.1093/sysbio/syx041
  53. Ree, R.H. & Smith, S.A. (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4–14. https://doi.org/10.1080/10635150701883881
  54. Remsen Jr., J.V., Areta, J.I., Bonaccorso, E., Claramunt, S., Del-Rio, G., Jaramillo, A., Lane, D.F., Robbins, M.B., Stiles, F.G. & Zimmer, K.J. (2023) A Classification of the Bird Species of South America. American Ornithological Society. Available from: http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm (accessed 24 June 2024)
  55. Roberts, B. (1940) The life cycle of Wilson’s Petrel. British Graham Land Expedition Scientific Reports, 1 (2), 141–194.
  56. Robertson, B.C., Stephenson, B.M. & Goldstein, S.J. (2011) When rediscovery is not enough: taxonomic uncertainty hinders conservation of a critically endangered bird. Molecular Phylogenetics and Evolution, 61, 949–952. https://doi.org/10.1016/j.ympev.2011.08.001
  57. Robertson, B.C., Stephenson, B.M., Ronconi, R.A., Goldstien, S.J., Shepherd, L., Tennyson, A., Carlile, N. & Ryan, P.G. (2016) Phylogenetic affinities of the Fregetta storm-petrels are not black and white. Molecular Phylogenetics and Evolution, 97, 170–176. https://doi.org/10.1016/j.ympev.2016.01.004
  58. Ronquist, F. (1997) Dispersal-vicariance analysis, a new approach to the quantification of historical biogeography. Systematic Biology, 46, 195–203. https://doi.org/10.1093/sysbio/46.1.195
  59. Sausner, J., Torres-Mura, J.C., Robertson, J. & Hertel, F. (2016) Ecomorphological differences in foraging and pattering behavior among storm-petrels in the eastern Pacific Ocean. Auk, 133, 397–414. https://doi.org/10.1642/AUK-15-158.1
  60. Sheard, K. (1943) Synonyms, homonyms and nomina nuda. Emu, 42, 177–180. https://doi.org/10.1071/MU942177
  61. Sibley, C.G., Comstock, J.A. & Ahlquist, J.E. (1990) DNA hybridization evidence of hominoid phylogeny: a reanalysis of the data. Journal of Molecular Evolution, 30, 202–236. https://doi.org/10.1007/BF02099992
  62. Smithe, F.B. (1975) Naturalist’s Color Guide. American Museum of Natural History, New York, New York, 229 pp.
  63. Spear, L.B. & Ainley, D.G. (2007) Storm-petrels of the Eastern Pacific Ocean: Species assembly and diversity along marine habitat gradients. Ornithological Monographs, 62, 1–77. https://doi.org/10.1642/0078-6594(2007)62[1:SOTEPO]2.0.CO;2
  64. Sorenson, M.D., Ast, J.C., Dimcheff, D.E., Yuri, T. & Mindell, D.P. (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution, 12 (2), 105–114. https://doi.org/10.1006/mpev.1998.0602
  65. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38 (7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  66. Taylor, R.S., Bolton, M., Beard, A., Birt, T., Deane-Coe, P., Raine, A.F., González-Solís, J., Lougheed, S.C. & Friesen, V.L. (2019) Cryptic species and independent origins of allochronic populations within a seabird species complex (Hydrobates spp.). Molecular Phylogenetics and Evolution, 139, 106552. https://doi.org/10.1016/j.ympev.2019.106552
  67. Techow, N.M., Ryan, P.G. & O’Ryan, C. (2009) Phylogeography and taxonomy of White-chinned and Spectacled Petrels. Molecular Phylogenetics and Evolution, 52 (1), 25–33. https://doi.org/10.1016/j.ympev.2009.04.004
  68. Torres, C.R., Ogawa, L.M., Gillingham, M.A., Ferrari, B. & van Tuinen, M. (2014) A multi-locus inference of the evolutionary diversification of extant flamingos (Phoenicopteridae). BMC Evolutionary Biology, 14, 1–10. https://doi.org/10.1186/1471-2148-14-36
  69. Vieillot, L.J.P. (1818) Nouveau Dictionnaire d’Histoire Naturelle. Vol. 19. Nouvelle Edition. Deterville, Paris, 619 pp.
  70. Wallace, S.J., Morris-Pocock, J.A., González-Solís, J., Quillfeldt, P. & Friesen, V.L. (2017) A phylogenetic test of sympatric speciation in the Hydrobatinae (Aves: Procellariiformes). Molecular Phylogenetics and Evolution, 107, 39–47. https://doi.org/10.1016/j.ympev.2016.09.025
  71. Wiens, J.J. (2006) Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics, 39 (1), 34–42. https://doi.org/10.1016/j.jbi.2005.04.001
  72. Winkler, D.W., Billerman, S.M. & Lovette, I.J. (2020) Southern Storm-Petrels (Oceanitidae). Version 1.0. In: Billerman, S.M., Keeney, B.K., Rodewald, P.G. & Schulenberg, T.S. (Eds.), Birds of the World. Cornell Lab of Ornithology, Ithaca, New York. https://doi.org/10.2173/bow.oceani2.01
  73. Xia, X. (2018) DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 35 (6), 1550–1552. https://doi.org/10.1093/molbev/msy073
  74. Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26 (1), 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3