Abstract
The complex of taxa closely related to Aricia anteros includes the species A. anteros sensu stricto, A. crassipuncta, A. bassoni, and A. vandarbani. All of them are sometimes considered as subspecies of a single polytypic species. Representatives of this complex are found in the Balkan Peninsula, Asia Minor, the Levant, the Caucasus, Transcaucasia, and Northern and Western Iran. In addition, an isolated population of A. anteros occurs in the Northern Black Sea region. In this work, based on DNA barcodes of all species and main populations of the complex, we show the existence of seven differentiated mitochondrial lineages: anteros (predominant in the Balkans), crassipuncta (predominant in Asia Minor), bassoni (the Levant), vandarbani (Talysh Mts), varicolor (Zagros Mts), dombaiensis (the Caucasus) and kalmius (Kalmius River basin in the Northern Black Sea region). The taxa of the A. anteros species complex are allopatric, except for A. anteros s.s. and A. crassipuncta, which have a mosaic distribution in eastern Anatolia and Transcaucasia. On the Balkan Peninsula, within the species A. anteros s.s, both the anteros and the crassipuncta mitochondrial haplogroups are found. This pattern is likely a consequence of interspecific hybridization and mitochondrial introgression. Based on mitochondrial DNA, the taxon A. crassipuncta mehmetcik from SE Anatolia is indistinguishable from A. crassipuncta crassipuncta, and the taxon varicolor from Central Iran is closer to the geographically distant European A. anteros than to the Anatolian A. crassipuncta. The geographically isolated and genetically differentiated population from the Kalmius River basin in the Northern Black Sea region is described here as a new subspecies.
References
- Alberti, B. (1969) Neue oder bemerkenswerte Lepidopteren-Formen aus dem Grossen Kaukasus. Deutsche Entomologische Zeitschrift, Berlin, Neue Folge, 16 (1–3), 189–203. https://doi.org/10.1002/mmnd.4810160117
- Beuret, H. (1959) Zur Taxonomie einiger palaearktischen Bläulinge (Lep., Lycaenidae). Mitteilungen der Entomologischen Gesellschaft Basel, 9, 80–84.
- Brower, A.V.Z. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 6491–6495. https://doi.org/10.1073/pnas.91.14.6491
- Christoph, H. (1893) Lepidoptera nova faunae palaearcticae. Deutsche Entomologische Zeitschrift Iris, Dresden, 6, 86–96.
- Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: A computer program to estimate gene genealogies. Molecular Ecology, 10, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x.
- Dufresnes, C., Poyarkov, N. & Jablonski, D. (2023) Acknowledging more biodiversity without more species. Proceedings of the National Academy of Sciences of the United States of America, 120 (40), e2302424120. https://doi.org/10.1073/pnas.2302424120
- Farrell, B.D. (2001) Evolutionary assembly of the milkweed fauna: Cytochrome oxidase I and the age of Tetraopes beetles. Molecular Phylogenetics and Evolution, 18, 467–478. https://doi.org/10.1006/mpev.2000.0888
- Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299.
- Freyer, C.F. (1831–1858) Neuere Beiträge zur Schmetterlingskunde mit Abbildungen nach der Natur. 7 Bände. Kollmann, Augsburg, 182 + 162+ 134 + 167 + 166 + 195 +178 Seiten, 96 + 96 + 96 + 96 + 96 + 120 +100 Tafeln.
- Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
- Hesselbarth, G., van Oorschot, H. & Wagener, S. (1995) Die Tagfalter der Türkei unter Berücksichtigung der angrenzenden Länder. 3 Bände. Selbstverlag S. Wagener, Bocholt, 1357 + 847 Seiten, 470 Farbtaf., 13 SW-Taf., 342 Verbreitungskarten.
- Hubert, N. & Hanner, R. (2015) DNA barcoding, species delineation and taxonomy: A historical perspective. DNA Barcodes 2015, 3, hal-01958691. Available from: https://hal.science/hal-01958691v1/file/dna-barcoding-species-delineation-and-taxonomy-ahistorical-perspective.pdf (accessed 16 January 2024)
- Jašić, P.N. (1998) Male genitalia of butterflies on Balkan Peninsula with a check-list (Lepidoptera: Hesperioidea and Papilionoidea). F. Slamka, Bratislava, 144 pp.
- Koçak, A.Ö. & Kemal, M. (2002) Faunistik taksonomik ve zoocoğrafik notlarla Çatak kelebekleri (Papilionoidea, Hesperioidea, Lepidoptera). Miscellaneous Papers, 82/85, 1–32.
- Kodandaramaiah, U., Simonsen, T.J., Bromilow, S., Wahlberg, N. & Sperling, F. (2013) Deceptive single-locus taxonomy and phylogeography: Wolbachia-associated divergence in mitochondrial DNA is not reflected in morphology and nuclear markers in a butterfly species. Ecology and Evolution, 3 (16), 5167–5176. https://doi.org/10.1002/ece3.886
- Kolev, Z. (2003) A final note on the taxon Aricia (Ultraaricia) orpheus and its relationship to Plebejus (Aricia) anteros (Lepidoptera: Lycaenidae). Phegea, 31 (4), 161–166.
- Kondratyuk, E.N. & Ostapko, V.M. (1990) Rare, endemic and relict plants of the south-east of Ukraine in nature and culture. Naukova Dumka, Kiev, 152 pp. [in Russian]
- Larsen, T.B. (1974) Butterflies of Lebanon. National Council for Scientific Research, Beirut, 255 pp., 16 Farbtaf.
- Larsen, T.B. (1995) Aricia crassipuncta bassoni Larsen, 1974 from Lebanon raised to species rank (Lepidoptera, Lycaenidae). Nota lepidopterologica, Magden, 17 (3/4), 121–123.
- Leigh, J.W. & Bryant, D. (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
- Lukhtanov, V.A., Shapoval, N.A. & Dantchenko, A.V. (2014) Taxonomic position of several enigmatic Polyommatus (Agrodiaetus) species (Lepidoptera, Lycaenidae) from Central and Eastern Iran: Insights from molecular and chromosomal data. Comparative Cytogenetics, 8, 313–322. https://doi.org/10.3897/CompCytogen.v8i4.8939
- Lukhtanov, V.A., Sourakov, A. & Zakharov, E.V. (2016) DNA barcodes as a tool in biodiversity research: testing pre-existing taxonomic hypotheses in Delphic Apollo butterflies (Lepidoptera, Papilionidae). Systematics and Biodiversity, 14 (6), 599–613. https://doi.org/10.1080/14772000.2016.1203371
- Lukhtanov, V.A. (2024) Polytypic species concept and subspecies in the genomic era. Proceedings of the National Academy of Sciences of the United States of America, 121 (9), e2317038121. https://doi.org/10.1073/pnas.2317038121
- Lvovsky, A.L. & Morgun D.V. (2007) Butterflies of Eastern Europe. KMK Scientific Press, Moscow, 443 pp. [in Russian]
- Markova, A.K., van Kolfshoten, T., Bohncke, S., Kosintsev, P.A., Mol, I., Puzachenko, A.Yu., Simakova, A.N., Smirnov, N.G., Verpoorte, A. & Golovachev, I.B. (2008) Evolution of European ecosystems during the transition from Pleistocene to Holocene (24 - 8 thousand years BP). KMK Scientific Press, Moscow, 556 pp. [in Russian]
- Nekrutenko, Y.P. (1980) Revisional notes on lycaenid butterfly species assigned to Ultraaricia Beuret (Lycaenidae). Nota lepidopterologica, Karlsruhe, 3 (1/2), 55–68.
- Nichols, R. (2001) Gene trees and species trees are not the same. Trends in Ecology and Evolution, 16 (7), 358–364. https://doi.org/10.1016/S0169-5347(01)02203-0
- Papadopoulou, A., Anastasiou, I. & Vogler, A.P. (2010) Revisiting the insect mitochondrial molecular clock: The Mid-Aegean trench calibration. Molecular Biology and Evolution, 27 (7), 1659–1672. https://doi.org/10.1093/molbev/msq051
- Pfeiffer, E. (1937/1938) Notizen über persische Lycaenidae. Mitteilungen der Münchner Entomologischen Gesellschaft, München, 27 & 28, 31–36 & 188–195 + 395.
- Phillips, J.D., Gillis, D.J. & Hanner, R.H. (2022) Lack of statistical rigor in DNA barcoding likely invalidates the presence of a true species’ barcode gap. Frontiers in Ecology and Evolution, 10, 859099. https://doi.org/10.3389/fevo.2022.859099
- Plyushch, I.G. & Botman, R.V. (2006) The first modern finding of the rare in Ukraine blue butterfly Aricia anteros (Lepidoptera, Lycaenidae). Vestnik zoologii, 40 (5), 444. [in Russian]
- Reichenbach, L. (1817) Aricia R.L. Allgemeine Literatur-Zeitung Jena, 14 (1), Nr 35, 280.
- Ritter, S., Michalski, S.G., Settele, J., Wiemers, M., Fric, Z.F., Sielezniew, M., Šašić, M., Rozier, Y. & Durka, W. (2013) Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS One, 8 (11), e78107. https://doi.org/10.1371/journal.pone.0078107
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
- Sañudo-Restrepo, C.P., Dincă, V., Talavera, G. & Vila, R. (2013) Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Molecular Phylogenetics and Evolution, 66 (1), 369–79. https://doi.org/10.1016/j.ympev.2012.10.010
- Sucháčková Bartoňová, A., Konvička, M., Marešová, J., Wiemers, M., Ignatev, N., Wahlberg, N., Schmitt, T. & Faltýnek Fric, Z. (2021) Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies. Scientific Reports, 11 (1), 3019. https://doi.org/10.1038/s41598-021-82433-8
- Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
- ten Hagen, W. & Schurian, K.G. (2009) Polyommatus (Aricia) crassipunctus varicolor ssp. n., eine neue Unterart aus Iran (Lepidoptera: Lycaenidae). Nachrichten des entomologischen Vereins Apollo, 30 (1/2), 9–17.
- Tshikolovets, V. & Nekrutenko, Yu.P. (2012) The butterflies of Caucasus and Transcaucasia (Armenia, Azerbaijan, Georgia and Russian Federation). Series butterflies of Palaearctic Asia. Vol. 9. Tshikolovets Publications, Pardubice, 342 pp.
- Tshikolovets, V., Naderi, A. & Eckweiler, W. (2014) The butterflies of Iran and Iraq. Series butterflies of Palaearctic Asia. Vol. 10. Tshikolovets Publications, Pardubice, 366 pp.
- Tshikolovets, V. & Yehuda, O.B. (2020) The butterflies of Middle East (Lebanon, Syria, Israel, Jordan and Egypt (Sinai Peninsula)). Series butterflies of Palaearctic Asia. Vol. 15. Tshikolovets Publications, Pardubice, 168 pp.
- Verity, R. (1938) Supplement to the “Butterfly races and Zygaenae of Macedonia.” The Entoologist’s Record and Journal of Variation, 50 (9), 1–16.
- Vershinina, A.O. & Lukhtanov, V.A. (2010) Geographical distribution of the cryptic species Agrodiaetus alcestis alcestis, A. alcestis karacetinae and A. demavendi (Lepidoptera, Lycaenidae) revealed by cytogenetic analysis. Comparative Cytogenetics, 4 (1), 1–11. https://doi.org/10.3897/compcytogen.v4i1.21
- Young, R.G., Abbott, C.L., Therriault, T.W. & Adamowicz, S.J. (2017) Barcode-based species delimitation in the marine realm: A test using Hexanauplia (Multicrustacea: Thecostraca and Copepoda). Genome, 60, 169–182. https://doi.org/10.1139/gen-2015-0209
- Züllich, R. (1929) Einige neue Lycaeniden-Formen aus meiner Sammlung. Zeitschrift des Österreichischen Entomologischen Vereins, 14 (5), 51–53.