Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-03-07
Page range: 301-347
Abstract views: 9
PDF downloaded: 3

Thriving in dry conditions: on the Neotropical spider genus Galapa (Araneae: Pholcidae)

Zoological Research Museum Alexander Koenig; LIB; Bonn; Germany
Zoological Research Museum Alexander Koenig; LIB; Bonn; Germany
Departamento de Biología; Universidad del Valle; Cali; Colombia
Campus Amílcar Ferreira Sobral; Universidade Federal do Piauí; Floriano; Piauí; Brazil
Araneae CO1 barcodes distribution modelling new species Ninetinae sampling bias taxonomy

Abstract

The genus Galapa Huber, 2000 includes tiny spiders (body length <1.5 mm) restricted to semi-arid habitats. It has long been thought to be endemic to the Galapagos Islands until G. spiniphila Huber, 2020 was described from the Venezuelan Paraguaná Peninsula. Here, we support this generic assignment with molecular (CO1) data and describe two new species from Colombia (G. gabito Huber sp. n.) and Costa Rica (G. murphyi Huber sp. n.), showing that the genus is actually widely distributed. Distribution modelling identifies several high suitability areas for Galapa, all of which are poorly sampled with respect to Pholcidae (ranging from Nicaragua to northern Peru and Guiana). Our results suggest a strong sampling bias against spiders restricted to dry tropical regions and habitats.

 

References

  1. Aharon, S., Huber, B.A. & Gavish-Regev, E. (2017) Daddy-long-leg giants: revision of the spider genus Artema Walckenaer, 1837 (Araneae, Pholcidae). European Journal of Taxonomy, 376, 1–57. https://doi.org/10.5852/ejt.2017.376
  2. Astrin, J.J., Höfer, H., Spelda, J., Holstein, J., Bayer, S., Hendrich, L., Huber, B.A., Kielhorn, K.-H., Krammer, H.-J., Lemke, M., Monje, J.C., Morinière, J., Rulik, B., Petersen, M., Janssen, H. & Muster, C. (2016) Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One, 11, e0162624. https://doi.org/10.1371/journal.pone.0162624
  3. Baert, L. (2013) Summary of our present knowledge of the spider communities of the Galapagos archipelago. First analysis of the spider communities of the islands Santa Cruz and Isabela. Belgian Journal of Zoology, 143 (Supplement), 159–185. [http://files.belgianjournalofzoology.eu/download/BJZ_143_supplement.pdf]
  4. Baert, L. (2014) New spider species (Araneae) from the Galápagos Islands (Ecuador). Bulletin de la Société royale belge d'Entomologie, 149, 263–271.
  5. Baert, L., Maelfait, J.-P., Hendrickx, F. & Desender, K. (2008) Distribution and habitat preference of the spiders (Araneae) of Galápagos. Bulletin de l’Institute Royal de Sciences Naturelles de Belgique, Entomologie, 78, 39–111.
  6. Bennett, R. (2014) COSEWIC assessment and status report on the northwestern cellar spider Psilochorus hesperus in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa. Available from: https://publications.gc.ca/site/eng/9.579870/publication.html (accessed 20 February 2024)
  7. Brown, B.V. (1993) A further chemical alternative to critical-point-drying for preparing small (or large) flies. Fly Times, 11, 10.
  8. Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B. & de Hoon, M.J. (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423. https://doi.org/10.1093/bioinformatics/btp163
  9. Crowther, T.W., Glick, H.B., Covey, K.R., Bettigole, C., Maynard, D.S., Thomas, S.M., Smith, J.R., Hintler, G., Duguid, M.C., Amatulli, G., Tuanmu, M.-N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S.J., Wiser, S.K., Huber, M.O., Hengeveld, G.M., Nabuurs, G.-J., Tikhonova, E., Borchardt, P., Li, C.-F., Powrie, L.W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A.C., Umunay, P.M., Piao, S.L., Rowe, C.W., Ashton, M.S., Crane, P.R. & Bradford, M.A. (2015) Mapping tree density at a global scale. Nature, 525, 201–205. https://doi.org/10.1038/nature14967
  10. Dederichs, T.M., Huber, B.A. & Michalik, P. (2022) Evolutionary morphology of sperm in pholcid spiders (Pholcidae, Synspermiata). BMC Zoology, 7, 52. https://doi.org/10.1186/s40850-022-00148-3
  11. Dimitrov, D., Astrin, J.J. & Huber, B.A. (2013) Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group. Cladistics, 29, 132–146. https://doi.org/10.1111/j.1096-0031.2012.00419.x
  12. Eberle, J., Dimitrov, D., Valdez-Mondragón, A. & Huber B.A. (2018) Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology, 18, 141. https://doi.org/10.1186/s12862-018-1244-8
  13. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. https://doi.org/10.2307/2408678
  14. Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
  15. Gertsch, W.J. & Peck, S.B. (1992) The pholcid spiders of the Galápagos Islands, Ecuador (Araneae: Pholcidae). Canadian Journal of Zoology, 70, 1185–1199. https://doi.org/10.1139/z92-166
  16. Huber, B.A. (1996) On the distinction between Modisimus and Hedypsilus (Araneae, Pholcidae), with notes on behavior and natural history. Zoologica Scripta, 25, 233–240. https://doi.org/10.1111/j.1463-6409.1996.tb00164.x
  17. Huber, B.A. (1998) Notes on the Neotropical spider genus Modisimus (Pholcidae, Araneae), with descriptions of thirteen new species from Costa Rica and neighboring countries. Journal of Arachnology, 26, 19–60.
  18. Huber, B.A. (2000) New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History, 254, 1–348. https://doi.org/10.1206/0003-0090(2000)254<0001:NWPSAP>2.0.CO;2
  19. Huber, B.A. (2005) High species diversity, male-female coevolution, and metaphyly in Southeast Asian pholcid spiders: the case of Belisana Thorell 1898 (Araneae, Pholcidae). Zoologica, 155, 1–126.
  20. Huber, B.A. (2011) Phylogeny and classification of Pholcidae (Araneae): an update. Journal of Arachnology, 39, 211–222. https://doi.org/10.1636/CA10-57.1
  21. Huber, B.A. (2018) The South American spider genera Mesabolivar and Carapoia (Araneae, Pholcidae): new species and a framework for redrawing generic limits. Zootaxa, 4395 (1), 1–178. https://doi.org/10.11646/zootaxa.4395.1.1
  22. Huber, B.A. (2022) Revisions of Holocnemus and Crossopriza: the spotted-leg clade of Smeringopinae (Araneae, Pholcidae). European Journal of Taxonomy, 795, 1–241. https://doi.org/10.5852/ejt.2022.795.1663
  23. Huber, B.A. & Acurio, A.E. (2022) Are introduced spiders displacing native species on Galápagos? Observations on pholcid spiders (Araneae: Pholcidae). Arachnology, 19, 191–198. https://doi.org/10.13156/arac.2022.19.sp1.191
  24. Huber, B.A. & Brescovit, A.D. (2003) Ibotyporanga Mello-Leitão: tropical spiders in Brazilian semi-arid habitats (Araneae: Pholcidae). Insect Systematics and Evolution, 34, 15–20. https://doi.org/10.1163/187631203788964926
  25. Huber, B.A. & Villarreal, O. (2020) On Venezuelan pholcid spiders (Araneae, Pholcidae). European Journal of Taxonomy, 718, 1–317. https://doi.org/10.5852/ejt.2020.718.1101
  26. Huber, B.A., Carvalho, L.S. & Benjamin, S.P. (2014) On the New World spiders previously misplaced in Leptopholcus: molecular and morphological analyses and descriptions of four new species (Araneae : Pholcidae). Invertebrate Systematics, 28, 432–450. https://doi.org/10.1071/IS13050
  27. Huber, B.A., Meng, G., Král, J., Ávila Herrera, I.M., Izquierdo, M.A. & Carvalho, L.S. (2023a) High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society, 198, 534–591. https://doi.org/10.1093/zoolinnean/zlac100
  28. Huber, B.A., Meng, G., Valdez-Mondragón, A., Král, J., Ávila Herrera, I.M. & Carvalho, L.S. (2023b) Short-legged daddy-long-leg spiders in North America: the genera Pholcophora and Tolteca (Araneae, Pholcidae). European Journal of Taxonomy, 880, 1–89. https://doi.org/10.5852/ejt.2023.880.2173
  29. Huber, B.A., Meng, G., Král, J., Ávila Herrera, I.M. & Izquierdo, M.A. (2023c) Revision of the South American Ninetinae genus Guaranita (Araneae, Pholcidae). European Journal of Taxonomy, 900, 32–80. https://doi.org/10.5852/ejt.2023.900.2301
  30. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  31. Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
  32. Letunic, I. & Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, W293–W296. https://doi.org/10.1093/nar/gkab301
  33. Magalhães, I., Fernandes, L., Ramírez, M. & Bonaldo, A. (2016) Phylogenetic position and taxonomic review of the Ianduba spiders (Araneae: Corinnidae) endemic to the Brazilian Atlantic rainforest. Arthropod Systematics & Phylogeny, 74, 127–159. https://doi.org/10.3897/asp.74.e31843
  34. Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  35. Morley, R.J. (2011) Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In: Bush, M., Flenley, J. & Gosling, W. (Eds.), Tropical Rainforest Responses to Climatic Change. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–34. https://doi.org/10.1007/978-3-642-05383-2_1
  36. Morrone, J.J. (2017) Neotropical Biogeography: Regionalization and Evolution. CRC Press, Boca Raton, Florida, 282 pp. https://doi.org/10.1201/b21824
  37. Nolasco, S. & Valdez-Mondragón, A. (2022) To be or not to be... Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus Physocyclus (Araneae, Pholcidae) using DNA barcoding and morphology. ZooKeys, 1135, 93–118. https://doi.org/10.3897/zookeys.1135.94628
  38. Oliveira, U., Soares-Filho, B., Leitão, R.F.M.H. & Rodrigues, H.O. (2019) BioDinamica: A toolkit for analyses of biodiversity and biogeography on the Dinamica-EGO modelling platform. PeerJ, 7, e7213. https://doi.org/10.7717/peerj.7213
  39. Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D’amico, J. a., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P., Kassem, K.R., Amico, J.A.D., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wesley, W., Hedao, P. & Kassem, K.R. (2001) Terrestrial Ecoregions of the World: a new map of life on Earth. BioScience, 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
  40. Platnick, N.I., Dupérré, N., Ubick, D. & Fannes, W. (2012) Got males? The enigmatic goblin spider genus Triaeris (Araneae, Oonopidae). American Museum Novitates, 3756, 1–36. https://doi.org/10.1206/3756.2
  41. Ratnasingham, S. & Hebert, P.D.N. (2007) bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  42. Reis-Junior, R., Oliveira, M.L. de & Borges, G.R.A. (2015) RT4Bio—R Tools for Biologists. https://doi.org/10.13140/RG.2.1.4532.2966
  43. Saitou, N. & Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  44. Sellwood, B.W. & Valdes, P.J. (2008) Jurassic climates. Proceedings of the Geologists’ Association, 119, 5–17. https://doi.org/10.1016/S0016-7878(59)80068-7
  45. Simard, M., Pinto, N., Fisher, J.B. & Baccini, A. (2011) Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 116, G04021. https://doi.org/10.1029/2011JG001708
  46. Simon, E. (1890) Étude sur les arachnides de l’Yemen. Annales de la Société Entomologique de France, 6, 77–124.
  47. Suyama, M., Torrents, D. & Bork, P. (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34, W609–W612. https://doi.org/10.1093/nar/gkl315
  48. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
  49. World Spider Catalog (2023) World Spider Catalog. Version 24.5. Natural History Museum Bern, online at http://wsc.nmbe.ch (accessed 6 October 2023) https://doi.org/10.24436/2
  50. Yang, C., Zheng, Y., Tan, S., Meng, G., Rao, W., Yang, C., Bourne, D.G., O’Brien, P.A., Xu, J., Liao, S., Chen, A., Chen, X., Jia, X., Zhang A. & Liu S. (2020) Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics, 21, 862. https://doi.org/10.1186/s12864-020-07255-w
  51. Zomer, R.J., Xu, J. & Trabucco, A. (2022) Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Scientific Data, 9, 409. https://doi.org/10.1038/s41597-022-01493-1