Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-02-23
Page range: 501-528
Abstract views: 4
PDF downloaded: 0

Phylogenetic analyses of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae) provide new insights into the Mexican Transition Zone theory

Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; km 1.5 Carretera Tlaxcala-Puebla S/N; La Loma Xicohtencatl; Tlaxcala de Xicohténcatl; 90070 Tlaxcala; Mexico
Red de Biología Evolutiva; Instituto de Ecología; A. C.; Carretera antigua a Coatepec 351; El Haya; Xalapa; 91073 Veracruz; Mexico; Emeritous Researcher; Instituto de Ecología; A. C.; Carretera antigua a Coatepec 351; El Haya; Xalapa; 91073 Veracruz; Mexico
Emeritous Researcher; Instituto de Ecología; A. C.; Carretera antigua a Coatepec 351; El Haya; Xalapa; 91073 Veracruz; Mexico
Coleoptera biogeography dung beetles Nearctic region Neotropical region out of the tropics model

Abstract

Being areas of biotic overlap located between biogeographic regions, transition zones function as natural laboratories. The present study explores the phylogenetic history of the dung beetle subfamily Scarabaeinae, in order to present an evolutionary scenario that allows inference of the biogeographic history of the Mexican Transition Zone (MTZ) and integration of the distributional patterns of its biota. The species sampling included 94 New World taxa (93 species of Scarabaeinae and one species of Aphodiinae). The phylogenetic relationships of the main clades recovered in our study were supported with PP values ≥ 0.95. Based on the BAYAREALIKE model to reconstruct the ancestral distributional patterns of Scarabaeinae, we inferred a complex scenario with 19 dispersal events, 15 vicariance events, and three extinctions. We suggest that the Ancient Neotropical and Tropical Paleoamerican patterns represent the most likely ancestral distributional patterns for the Scarabaeinae of the MTZ, which probably settle there during the Eocene-Oligocene. The rest of the Scarabaeinae distributional patterns were assembled in subsequent periods. The results suggest that the MTZ had two separate formation stages: a Paleo-MTZ (Eocene-Miocene) and a current MTZ (Pliocene-Anthropocene). We conclude that the evolutionary history as well as the dispersal-vicariance scenario for the Scarabaeinae of the MTZ fits the “out of the tropics” model.

 

References

  1. Agnolin, F.L., Chimento, N.R. & Lucero, S.O. (2019) Pre-GABI biotic connections between the Americas: An alternative model to explain the “less-splendid isolation” of South America. Revista Geográfica de América Central, 61, 91–106.
  2. Ahrens, D., Schwarzer, J. & Vogler, A.P. (2014) The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proceedings of the Royal Society B: Biological Sciences, 281, 20141470. https://doi.org/10.1098/rspb.2014.1470
  3. Alfaro, M.E. & Huelsenbeck, J.P. (2006) Comparative performance of Bayesian and AIC-based measures of phylogenetic model uncertainty. Systematic Biology, 55, 89–96. https://doi.org/10.1080/10635150500433565
  4. Arillo, A. & Ortuño, V.M. (2008) Did dinosaurs have any relation with dung-beetles? (The origin of coprophagy). Journal of Natural History, 42, 1405–1408. https://doi.org/10.1080/00222930802105130
  5. Arita, H.T. & Vázquez-Domínguez, E. (2008) The tropics: cradle, museum or casino? A dynamic null model for latitudinal gradients of species diversity. Ecology Letters, 11, 653–663. https://doi.org/10.1111/j.1461-0248.2008.01197.x
  6. Bai, M., Li, S., Lu, Y., Yang, H., Tong, Y. & Yang, X. (2015) Mandible evolution in the Scarabaeinae (Coleoptera: Scarabaeidae) and adaptations to coprophagous habits. Frontiers in Zoology, 12, 30. https://doi.org/10.1186/s12983-015-0123-z
  7. Barnosky, A.D., Matzke, N., Tomiya, S., Wogan. G.O.U., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B. & Ferrer, E.A. (2011) Has the Earth’s sixth mass extinction already arrived? Nature, 471, 51–57. https://doi.org/10.1038/nature09678
  8. Barnosky, A.D., Lindsey, E.L., Villavicencio, N.A., Bostelmann, E., Hadly, E.A., Wanket, J. & Marshall, C.R. (2016) Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proceedings of the National Academy of Sciences, 113, 856–861. https://doi.org/10.1073/pnas.1505295112
  9. Barrier, E., Velasquillo, L., Chavez, M. & Gaulon, R. (1998) Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics, 287, 77–96. https://doi.org/10.1016/S0040-1951(98)80062-0
  10. Beebe, N.W. & Saul, A. (1995) Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. American Journal of Tropical Medicine and Hygiene, 53, 478–481. https://doi.org/10.4269/ajtmh.1995.53.478
  11. Beynon, S.A., Wainwright, W.A. & Christie, M. (2015) The application of an ecosystem services framework to estimate the economic value of dung beetles to the U.K. cattle industry. Ecological Entomology, 40, 124–135. https://doi.org/10.1111/een.12240
  12. Breeschoten, T., Doorenweerd, C., Tarasov, S. & Vogler, A.P. (2016) Phylogenetics and biogeography of the dung beetle genus Onthophagus inferred from mitochondrial genomes. Molecular Phylogenetics and Evolution, 105, 86–95. https://doi.org/10.1016/j.ympev.2016.08.016
  13. Bromley, R.G., Buatois, L.A., Genise, J.F., Labandeira, C.G., Mángano, M.G., Melchor, R.N., Schlirf, M. & Uchman, A. (2007) Comments on the paper “Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrian and freshwater ichnocoenoses” by Stephen T.Hasiotis. Sedimentary Geology, 200, 141–150. https://doi.org/10.1016/j.sedgeo.2006.11.007
  14. Buchs, D.M., Irving, D., Coombs, H., Miranda, R., Wang, J., Coronado, M., Arrocha, R., Lacerda, M., Goff, C., Almengor, E., Portugal, E., Franceschi, P., Chichaco, E. & Redwood, S.D. (2019) Volcanic contribution to emergence of Central Panama in the Early Miocene. Scientific Reports, 9, 1417. https://doi.org/10.1038/s41598-018-37790-2
  15. Cano, E.B. (1998) Deltochilum valgum acropyge Bates (Coleoptera: Scarabaeidae: Scarabaeinae): habits and distribution. The Coleopterists Bulletin, 52, 174–178.
  16. Carvalho, M.R., Jaramillo, C., de la Parra, F., Caballero-Rodríguez, D., Herrera, F., Wing, S., Turner, B.L., D’Apolito, C., Romero-Báez, M., Narváez, P., Martínez, C., Gutierrez, M., Labandeira, C., Bayona, G., Rueda, M., Paez-Reyes, M., Cárdenas, D., Duque, Á., Crowley, J.L., Santos, C. & Silvestro, D. (2021) Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 372, 63–68. https://doi.org/10.1126/science.abf1969
  17. Chávez, R.P. (1993) Estudio palinológico de las floras fósiles del Mioceno inferior y principios del Mioceno medio de la región de Pichucalco, Chiapas, México. Acta Botánica Mexicana, 24, 1–96. https://doi.org/10.21829/abm24.1993.677
  18. Chin, K. & Gill, B.D. (1996) Dinosaurs, dung beetles, and conifers: participants in a Cretaceous food web. Palaios, 11, 280–285. https://doi.org/10.2307/3515235
  19. Cook, J. (1998) A revision of the Neotropical genus Bdelyrus Harold (Coleoptera: Scarabaeidae). The Canadian Entomologist, 130, 631–689. https://doi.org/10.4039/Ent130631-5
  20. Crews, S.C. & Esposito, L.A. (2020) Towards a synthesis of the Caribbean biogeography of terrestrial arthropods. BMC Evolutionary Biology, 20, 12. https://doi.org/10.1186/s12862-019-1576-z
  21. Cristóvão, J.P. & Lyal, C.H.C. (2018) Anchonini in Africa: New species and genus confirming a transatlantic distribution (Coleoptera: Curculionidae: Molytinae). Diversity, 10, 1–34. https://doi.org/10.3390/d10030082
  22. Cupello, M. (2022) Systematics of the enigmatic South American Streblopus Van Lansberge, 1874 dung beetles and their transatlantic origin: a case study on the role of dispersal events in the biogeographical history of the Scarabaeinae (Coleoptera: Scarabaeidae). European Journal of Taxonomy, 603, 1–85. https://doi.org/10.5852/ejt.2020.603
  23. Cupello, M. (2023) Mammalian islanders and dung beetles: a clarification. Scarabaeus, 3, 19–28.
  24. Cupello, M., Silva, F.A.B. & Vaz-de-Mello, F.Z. (2023) The Taxonomic Revolution of New World dung beetles (Coleoptera Scarabaeidae: Scarabaeinae). Frontiers in Ecology and Evolution, 11, 1168754. https://doi.org/10.3389/fevo.2023.1168754
  25. de Oliveira F.B., Molina E.C. & Marroig G. (2009) Paleogeography of the South Atlantic: A route for primates and rodents into the New World? In: Garber, P.A., Estrada, A., Bicca-Marques, J.C. & Heymann, E.W. (Eds.), South American Primates, Developments in Primatology: Progress and Prospects. Springer-Verlag, New York, New York, pp. 55–68. https://doi.org/10.1007/978-0-387-78705-3_3
  26. Davis, A.L.V., Scholtz, C.H. & Philips, T.K. (2002) Historical biogeography of scarabaeine dung beetles. Journal of Biogeography, 29, 1217–1256. https://doi.org/10.1046/j.1365-2699.2002.00776.x
  27. Davis, A.L.V. (2009) Section D. Historical biogeography of the Scarabaeinae and its physical and biotic drivers. In: Scholtz, C.H., Davis, A.L.V. & Kryger, U. (Eds.), Evolutionary biology and conservation of dung beetles. Pensoft, Sofia, pp. 329–385.
  28. Davis, A.L.V., Scholtz, C.H. & Sole, C.L. (2016) Biogeographical and co-evolutionary origins of scarabaeine dung beetles: Mesozoic vicariance versus Cenozoic dispersal and dinosaur versus mammal dung. Biological Journal of the Linnean Society, 120, 258–273. https://doi.org/10.1111/bij.12893
  29. Denk, T., Grímsson, F. & Zetter, R. (2010) Episodic migration of oaks to Iceland: Evidence for a North Atlantic “Land Bridge” in the latest Miocene. American Journal of Botany, 97, 276–287. https://doi.org/10.3732/ajb.0900195
  30. Dietz, L., Seidel, M., Eberle, J., Misof, B., Pacheco, T.L., Podsiadlowski, L., Ranisinghe, S., Gunter, N.L., Niehuis, O., Mayer, C. & Ahrens, D. (2023) A transcriptome-based phylogeny of Scarabaeoidea confirms the sister group relationship of dung beetles and phytophagous pleurostict scarabs (Coleoptera). Systematic Entomology, 48, 672–686. https://doi.org/10.1111/syen.12602
  31. Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. https://doi.org/10.1093/molbev/mss075
  32. Dugès, E. (1902) Algo sobre la distribución geográfica de algunas aves. Memorias de la Sociedad Científica Antonio Alzate, 18, 44–46.
  33. Ebert, K.M., Monteith, G.B., Menéndez, R. & Merritt, D.J. (2019) Bait preferences of Australian dung beetles (Coleoptera: Scarabaeidae) in tropical and subtropical Queensland forests. Austral Entomology, 58, 772–782. https://doi.org/10.1111/aen.12396
  34. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340
  35. Edmonds, W.D. (1994) Revision of Phanaeus MacLeay, a New World genus of Scarabaeinae dung beetles. Contributions in Science of the Natural History Museum of Los Angeles County, 443, 1–105. https://doi.org/10.5962/p.208079
  36. Eguiluz de Antuñano, S., Marrett, R. & Aranda García, M. (2000) Tectónica de la Sierra Madre Oriental, México. Boletín de la Sociedad Geológica Mexicana, 53, 1–26. https://doi.org/10.18268/BSGM2000v53n1a1
  37. Faith, J.T. & Surovell, T.A. (2009) Synchronous extinction of North America’s Pleistocene mammals. Proceedings of the National Academy of Sciences, 106, 20641–20645. https://doi.org/10.1073/pnas.0908153106
  38. Favila, M.E. (2012) Historical, biogeographical and ecological factors explain the success of some native dung beetles after the introduction of cattle in Mexico. Pastos, 42, 161–181.
  39. Ferrari, L., Orozco-Esquivel, T., Manea, V. & Manea, M. (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522–523, 122–149. https://doi.org/10.1016/j.tecto.2011.09.018
  40. Ferrari, L., Valencia-Moreno, M. & Bryan, S (2007) Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. Geological Society of America Special Papers, 422, 1–39. https://doi.org/10.1130/2007.2422(01)
  41. Ferro, I. & Morrone, J.J. (2014) Biogeographical transition zones: a search for conceptual synthesis. Biological Journal of the Linnean Society, 113, 1–12. https://doi.org/10.1111/bij.12333
  42. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–9.
  43. Génier, F. (2015) Ateuchus cujuchi n. sp., a new inquiline species of Scarabaeinae (Coleoptera: Scarabaeidae) from tuco-tuco burrows in Bolivia. Zootaxa, 3946 (1), 146–148. https://doi.org/10.11646/zootaxa.3946.1.9
  44. Gillett, C.P.D.T. & Toussaint, E.F.A. (2020) Macroevolution and shifts in the feeding biology of the New World scarab beetle tribe Phanaeini (Coleoptera: Scarabaeidae: Scarabaeinae). Biological Journal of the Linnean Society, 130, 661–682. https://doi.org/10.1093/biolinnean/blaa058
  45. Giménez-Gómez, V.C, Verdú, J.R., Velazco, S.J.E. & Zurita, G.A. (2020) Dung beetle trophic ecology: are we misunderstanding resources attraction? Ecological Entomology, 46, 552–561. https://doi.org/10.1111/een.13001
  46. Graham, A. (1999) Studies in Neotropical Paleobotany. XIII. An Oligo-Miocene Palynoflora from Simojovel (Chiapas, México). American Journal of Botany, 86, 17–31. https://doi.org/10.2307/2656951
  47. Gou, P., Liu, Q., Xu, Y., Jiang, K., Hou, M., Ding, L., Pyron, R.A. & Burbrink, F.T. (2012) Out of Asia: Natricine snakes support the Cenozoic Beringian dispersal hypothesis. Molecular Phylogenetics and Evolution, 63, 825–833. https://doi.org/10.1016/j.ympev.2012.02.021
  48. Gunter, N.L., Weir, T.A., Slipinksi, A., Bocka, L. & Cameron, L. (2016) If dung beetles (Scarabaeidae: Scarabaeinae) arose in association with dinosaurs, did they also suffer a mass co-extinction at the K-Pg boundary? PLoS ONE, 11, e0153570. https://doi.org/10.1371/journal.pone.0153570
  49. Gunter, N.L., Monteith, G.B., Cameron, S.L. & Weir, T.A. (2018) Evidence from Australian mesic zone dung beetles supports their Gondwanan origin and Mesozoic diversification of the Scarabaeinae. Insect Systematics & Evolution, 50, 162–188. https://doi.org/10.1163/1876312X-00002171
  50. Gutiérrez-Velázquez, A., Rojas-Soto, O., Reyes-Castillo, P. & Halffter, G. (2012) The classic theory of Mexican Transition Zone revisited: the distributional congruence patterns of Passalidae (Coleoptera). Invertebrate Systematics, 27, 282–293. https://doi.org/10.1071/IS12056
  51. Hall, T.A. (1999) BioEdit: to user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
  52. Halffter, G. (1962) Explicación preliminar de la distribución geográfica de los Scarabaeidae mexicanos. Acta Zoológica Mexicana, Nueva Serie, 5, 1–17.
  53. Halffter, G. (1964) La entomofauna Americana, ideas acerca de su origen y distribución. Folia Entomológica Mexicana, 6, 1–108.
  54. Halffter, G. (1978) Un nuevo patrón de dispersión en la Zona de Transición Mexicana: el mesoamericano de montaña. Folia Entomológica Mexicana, 39–40, 219–222.
  55. Halffter, G. (1987) Biogeography of the montane entomofauna of Mexico and Central America. Annual Review of Entomology, 32, 95–114. https://doi.org/10.1146/annurev.en.32.010187.000523
  56. Halffter, G. (2017) La zona de transición mexicana y la megadiversidad de México: del marco histórico a la riqueza actual. Dugesiana, 24, 77–89.
  57. Halffter, G. (2019) La Zona de Transición Mexicana: Referente obligado para una nueva ponderación de la riqueza de México. In: Moreno, C.E. (Ed.), La biodiversidad en un mundo cambiante: Fundamentos Teóricos y metodológicos para su estudio. Universidad Autónoma del Estado de Hidalgo, Libermex, Pachuca de Soto, pp. 133–159.
  58. Halffter, G., Espinosa de los Monteros, A., Nolasco-Soto, J., Arriaga-Jiménez, A. & Rivera-Gasperín, S. (2022) Bajacanthon, a new subgenus for the Mexican Deltochilini (Coleoptera: Scarabaeidae: Scarabaeinae) fauna. Diversity, 14, 109. https://doi.org/10.3390/d14020109
  59. Halffter, G., Favila, M.E. & Arellano, L. (1995) Spatial distribution of three groups of Coleoptera along an altitudinal transect in the Mexican Transition Zone and its biogeographical implications. Elytron, 9, 151–185.
  60. Halffter, G. & Halffter, V. (1989) Behavioral evolution of the non-rolling roller beetles (Coleoptera: Scarabaeidae: Scarabaeinae. Acta Zoológica Mexicana, Nueva Serie, 32, 2–53. https://doi.org/10.21829/azm.1989.31321937
  61. Halffter, G. & Halffter, V. (2009) Why and where coprophagous beetles (Coleoptera: Scarabaeinae) eat seeds, fruits or vegetable detritus. Boletín de la Sociedad Entomológica Aragonesa, 45, 1–22.
  62. Halffter, G. & Matthews, E.G. (1966) The natural history of dung beetles of the subfamily Scarabaeinae. Folia Entomológica Mexicana, 12–14, 1–321.
  63. Halffter, G. & Morrone, J.J. (2017) An analytical review of Halffter’s Mexican transition zone, and its relevance for evolutionary biogeography, ecology and biogeographical regionalization. Zootaxa, 4226 (1), 1–46. https://doi.org/10.11646/zootaxa.4226.1.1
  64. Halffter, G., Verdú, J.R., Márquez, J. & Moreno, C.E. (2008) Biogeographical analysis of Scarabaeinae and Geotrupinae along a transect in Central Mexico. Fragmenta Entomologica, 40, 273–322.
  65. Halffter, G., Zunino, M., Moctezuma, V. & Sánchez-Huerta, J.L. (2019) The integration processes of the distributional patterns in the Mexican Transition Zone: Phyletic, paleogeographic and ecological factors of a case study. Zootaxa, 4586 (1), 1–34. https://doi.org/10.11646/zootaxa.4586.1.1
  66. Heilprin, A. (1887) The geographical and geological distribution of animals. International Scientific Series, New York and London, 435 pp. https://doi.org/10.5962/bhl.title.28695
  67. Howden, H.F. & Cartwright, O.L. (1963) Scarab beetles of the genus Onthophagus Latreille north of Mexico (Coleoptera: Scarabaeidae). Proceedings of the United States National Museum, 114, 1–133. https://doi.org/10.5479/si.00963801.114-3467.1
  68. Hunter, T., Bergsten, J., Levkanicova, Z., Papadopoiulou, A., St. John, O., Wild, R., Hammond, P.M., Ahrens, D., Balke, M., Caterino, M.S., Gómez-Zurita, J., Ribera, I., Barraclough, T.G., Bocakova, M., Bocak, L. & Vogler, A.P. (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318, 1913–1916. https://doi.org/10.1126/science.1146954
  69. Jablonski, D., Roy, K. & Valentine, J.W. (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science, 314, 102–106. https://doi.org/10.1126/science.1130880
  70. Jaramillo, C. (2018) Evolution of the Isthmus of Panama: Biological, Paleoceanographic and Paleoclimatological Implications. In: Hoorn, C., Perrigo, A. & Antonelli, A. (Eds.), Evolution of the Isthmus of Panama: Biological, Paleoceanographic and Paleoclimatological Implications. John Wiley and Sons Ltd., Hoboken, New Jersey, pp. 323–338.
  71. Jaramillo, C. (2019) 140 million years of tropical biome evolution. In: Gómez, J. & Pinilla-Pachon, A.O. (Eds.), The Geology of Colombia. Vol. 2. Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36. Servicio Geológico Colombiano, Bogotá, pp. 1–28.
  72. Jeannel, R. (1942) La genèse des faunes terrestres: Éléments de biogéographie. Presses Universitaires de France, Paris, 513 pp.
  73. Kistler L., Montenegro Á., Smith B.D., Gifford J.A., Green R.E., Newsom L.A. & Shapiro B. (2014) Transoceanic drift and the domestication of African bottle gourds in the Americas. Proceedings of the National Academy of Sciences, 111, 2937‒2941. https://doi.org/10.1073/pnas.1318678111
  74. Kohlmann, B. & Solís, Á. (2001) El género Onthophagus (Coleoptera: Scarabaeidae) en Costa Rica. Giornale Italiano di Entomologia, 9, 159–261.
  75. Kohlmann, B., Solís, Á. & Alvarado, G.E. (2019) Description of Onthophagus humboldti and Uroxys bonplandi, two new scarab beetles (Coleoptera, Scarabaeidae, Scarabaeinae) from Costa Rica, with notes on tropical mountain brachyptery and endemicity. ZooKeys, 881, 23–51. https://doi.org/10.3897/zookeys.881.38026
  76. Kohlmann, B. & Vaz-de-Mello, F.Z. (2018) A new key for the species of Ateuchus Weber (Coleoptera: Scarabaeidae: Scarabaeinae) occurring in Mexico, with a description of the first North American inquiline species from a rodent burrow (Rodentia: Geomydae) and new distribution records. Revista Brasileira de Entomologia, 62, 131–134. https://doi.org/10.1016/j.rbe.2018.01.002
  77. Kohlmann-Cuesta, B.C. (2022) Escarabajos estercoleros (Aphodiidae, Geotrupidae y Scarabaeidae). In: CONABIO & SEMAEDESO (Eds.), La biodiversidad en Oaxaca. Estudio de estado. Vol. 3. CONABIO, Ciudad de México, pp. 61–72.
  78. Larsen, T.H., Lopera, A. & Forsyth, A. (2006) Extreme trophic habitat specialization by Peruvian dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). The Coleopterists Bulletin, 60, 315–324. https://doi.org/10.1649/0010-065X(2006)60[315:ETAHSB]2.0.CO;2
  79. Lavin, M. & Luckow, M. (1993) Origins and relationships of tropical North America in the context of the Boreotropics hypothesis. American Journal of Botany, 80, 1–14. https://doi.org/10.1002/j.1537-2197.1993.tb13761.x
  80. Lizardo, V., Moctezuma, V. & Escobar, F. (2022) Distribution, regionalization, and diversity of the dung beetle genus Phanaeus MacLeay (Coleoptera: Scarabaeidae) using species distribution models. Zootaxa, 5213 (5), 546–568. https://doi.org/10.11646/zootaxa.5213.5.4
  81. Lobo, J.M. & Halffter, G. (2000) Biogeographical and ecological factors affecting the altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera: Scarabaeoidea): a comparative study. Annals of the Entomological Society of America, 93, 115–126. https://doi.org/10.1603/0013-8746(2000)093[0115:BAEFAT]2.0.CO;2
  82. Lopes, F., Gunter, N., Gillett, C.P.D.T., Montanaro, G., Rossini, M., Losacco, F., Daniel, G.M., Straube, N. & Tarasov, S. (2023a) From museum drawer to tree: historical DNA phylogenomics clarifies the systematics of rare dung beetles (Coleoptera: Scarabaeinae) from museum collections. BioRxiv. [published online] https://doi.org/10.1101/2023.10.27.564347
  83. Lopes, F., Rossini, M., Losacco, F., Montanaro, G., Gunter, N. & Tarasov, S. (2023b) Metagenomics reveals that dung beetles (Coleoptera: Scarabaeinae) broadly feed on reptile dung. Did they also feed on that of dinosaurs? Frontiers in Ecology and Evolution, 11, 1132729. https://doi.org/10.3389/fevo.2023.1132729
  84. Lumaret, J.P., Kadiri, N. & Martínez-M, I. (2020) The global decline of dung beetles. In: DellaSala, D.A. & Goldstein, M.I. (Eds.), Imperiled: The Encyclopedia of Conservation. Elsevier, Amsterdam, pp. 553–562. https://doi.org/10.1016/B978-0-12-821139-7.00018-0
  85. Maddison, W.P. & Maddison, D.R. (2010) Mesquite: a modular system for evolutionary analysis. Version 2.73. Available from: http://mesquiteproject.org (accessed 24 January 2024)
  86. Magalhaes, I.L.F., Martins, P.H., Faleiro, B.T., Vidigal, T.H.D.A., Santos, F.R., Carvalho, L.S. & Santos, A.J. (2023) Complete phylogeny of Micrathena spiders suggests multiple dispersal events among Neotropical rainforests, islands, and landmasses, and indicates Andean orogeny promotes speciation. BioRxiv. [published online] https://doi.org/10.1101/2023.11.01.565210
  87. Martínez-Hernández, E. & Ramírez-Arriaga, E. (1999) Palinoestratigrafía de la región de Tepeji de Rodríguez, Puebla, México. Implicaciones cronoestratigráficas. Revista Mexicana de Ciencias Geológicas, 16, 187–207.
  88. Manea, V.C. & Manea, M. (2006) The origin of modern Chiapanecan volcanic arc in southern Mexico inferred from thermal models. Special Paper of the Geological Society of America, 412, 27–38. https://doi.org/10.1130/2006.2412(02)
  89. Mastretta-Yanes, A., Moreno-Letelier, A., Piñero, D., Jorgensen, T.H. & Emerson, B.C. (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography, 42, 1586–1600. https://doi.org/10.1111/jbi.12546
  90. Matschiner M. (2019) Gondwanan vicariance or trans-Atlantic dispersal of cichlid fishes: a review of the molecular evidence. Hydrobiologia, 832, 9–37. https://doi.org/10.1007/s10750-018-3686-9
  91. Matthews, E.G. (1961) A revision of the genus Copris Müller of the Western Hemisphere (Coleoptera, Scarabaeidae). Entomologica Americana, 41, 1–137.
  92. Matthews, E.G. (1966) A taxonomic and zoogeographic survey of the Scarabaeinae of the Antilles. (Coleoptera: Scarabaeidae). Memoirs of the American Entomological Society, 21, 111–134.
  93. Matthews, E.G. (1972) A revision of the Scarabaeinae dung beetles of Australia. I. Tribe Onthophagini. Australian Journal of Zoology, Supplementary Series, 9, 1–330. https://doi.org/10.1071/AJZS009
  94. Matthews, E.G. (1974) A revision of the Scarabaeinae dung beetles of Australia. II. Tribe Scarabaeini. Australian Journal of Zoology, Supplementary Series, 24, 1–211. https://doi.org/10.1071/AJZS038
  95. Matzke, N.J. (2013a) Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography, 5, 242–248. https://doi.org/10.21425/F5FBG19694
  96. Matzke, N.J. (2013b) BioGeoBEARS: BioGeography with Bayesian (and Likelihood) Evolutionary Analysis in R Scripts. Available from: http://CRAN.R-project.org/package=BioGeoBEARS (accessed 24 January 2024)
  97. Matzke, N.J. (2014) Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology, 63, 951–970. https://doi.org/10.1093/sysbio/syu056
  98. Mayr, G., Alvarenga, H. & Mourer-Chauviré, C. (2011) Out of Africa: Fossils shed light on the origin of the hoatzin, an iconic Neotropic bird. Naturwissenschaften, 98, 961–966. https://doi.org/10.1007/s00114-011-0849-1
  99. McKenna, D.D., Farrel, B.D., Caterino, M.S., Farnum, C.W., Hawks, D.C., Maddison, D.R., Seago, A.E., Short, A.E.Z., Newton, A.F. & Thayer, M.K. (2015) Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Systematic Entomology, 40, 35–60. https://doi.org/10.1111/syen.12093
  100. Miguez-Gutiérrez, A., Castillo, J., Márquez, J. & Goyenechea, I. (2013) Biogeografía de la Zona de Transición Mexicana con base en un análisis de árboles reconciliados. Revista Mexicana de Biodiversidad, 84, 215–224. https://doi.org/10.7550/rmb.32119
  101. Miller, S.E. (1983) Late Quaternary insects of Rancho La Brea and McKittrick, California. Quaternary Reseach, 20, 90–104. https://doi.org/10.1016/0033-5894(83)90067-4
  102. Miller, S.E., Gordon, R.D. & Howden, H.F. (1981) Reevaluation of Pleistocene scarab beetles from Rancho La Brea, California (Coleoptera: Scarabaeidae). Proceedings of the Entomological Society of Washington, 83, 625–630.
  103. Mlambo, S., Sole, C.L. & Scholtz, C.H. (2015) A molecular phylogeny of the African Scarabaeinae (Coleoptera: Scarabaeidae). Arthropod Systematics and Phylogeny, 73, 303–321. https://doi.org/10.3897/asp.73.e31806
  104. Moctezuma, V. & Halffter, G. (2019) New biogeographical makeup for colonisation of the Baja California Peninsula, with the description of a new Onthophagus (Coleoptera: Scarabaeidae: Scarabaeinae). Journal of Natural History, 53, 2057–2071. https://doi.org/10.1080/00222933.2019.1685694
  105. Moctezuma, V. & Halffter, G. (2021) Taxonomic revision of the Phanaeus endymion species group (Coleoptera: Scarabaeidae), with the descriptions of five new species. European Journal of Taxonomy, 747, 1–71. https://doi.org/10.5852/ejt.2021.747.1333
  106. Moctezuma, V., Halffter, G. & Escobar, F. (2016) Response of copronecrophagous beetle communities to habitat disturbance in two mountains of the Mexican Transition Zone: influence of historical and ecological factors. Journal of Insect Conservation, 20, 945–956. https://doi.org/10.1007/s10841-016-9923-5
  107. Moctezuma, V., Halffter, G. & Lizardo, V. (2021) The Phanaeus tridens species group (Coleoptera: Scarabaeoidea): a dung beetle group with genital morphological stasis but a changing ecological niche. Acta Entomologica Musei Nationalis Pragae, 61, 447–482. https://doi.org/10.37520/aemnp.2021.025
  108. Moctezuma, V., Halffter, G. & Mora-Aguilar, E.F. (2023) Una especie nueva del complejo de especies Onthophagus mirabilis (Coleoptera: Scarabaeidae: Scarabaeinae) de la región de Los Chimalapas, Oaxaca, México. Revista Mexicana de Biodiversidad, 94, e945081. https://doi.org/10.22201/ib.20078706e.2023.94.5081
  109. Moctezuma, V., Nogueira, G. & Halffter, G. (2020a) A revalidation and a new species in the genus Phanaeus (Coleoptera: Scarabaeoidea: Scarabaeidae: Scarabaeinae). Besoiro, 30, 3–11.
  110. Moctezuma, V., Sánchez-Huerta, J.L. & Halffter, G. (2018) Two new species of Ateuchus with remarks on ecology, distributions, and evolutionary relationships (Coleoptera, Scarabaeidae, Scarabaeinae). ZooKeys, 747, 71–86. https://doi.org/10.3897/zookeys.747.22731
  111. Moctezuma, V., Sánchez-Huerta, J.L. & Halffter, G. (2019) New species of Canthidium (Coleoptera: Scarabaeidae: Scarabaeinae) from Mexico. The Canadian Entomologist, 151, 432–441. https://doi.org/10.4039/tce.2019.25
  112. Moctezuma, V., Sánchez-Huerta, J.L. & Halffter, G. (2020b) Two new species of the Onthophagus clypeatus species group (Coleoptera: Scarabaeidae: Scarabaeinae). Florida Entomologist, 103, 281–287. https://doi.org/10.1653/024.103.0220
  113. Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez-Angel, L.C., Rodriguez-Parra, L.A., Ramirez, V. & Niño, H. (2015) Middle Miocene closure of the Central American Seaway. Science, 348, 226–229. https://doi.org/10.1126/science.aaa2815
  114. Morrone, J.J. (2004) Panbiogeografía, componentes bióticos y zonas de transición. Revista Brasileira de Entomologia, 48, 149–162. https://doi.org/10.1590/S0085-56262004000200001
  115. Morrone, J.J. (2014) Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota. Cladistics, 30, 202–214. https://doi.org/10.1111/cla.12039
  116. Morrone, J.J. (2015a) Biogeographical regionalisation of the world: a reappraisal. Australian Systematic Botany, 28, 81–90. https://doi.org/10.1071/SB14042
  117. Morrone, J.J. (2015b) Halffter’s Mexican transition zone (1962–2014), cenocrons and evolutionary biogeography. Journal of Zoological Systematics and Evolutionary Research, 53, 249–257. https://doi.org/10.1111/jzs.12098
  118. Morrone, J.J. (2019) Regionalización biogeográfica y evolución biótica de México: encrucijada de la biodiversidad del Nuevo Mundo. Revista Mexicana Biodiversidad, 90, e902980. https://doi.org/10.22201/ib.20078706e.2019.90.2980
  119. Neita-Moreno, J.C., Agrain, F.A., Eberle, J., Ahrens, D. & Pereyra, V. (2019) On the phylogenetic position and systematics of extant and fossil Aclopinae (Coleoptera: Scarabaeidae). Systematic Entomology, 44, 709–727. https://doi.org/10.1111/syen.12366
  120. Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., Favila, M.E. & Scarabaeinae Research Network (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141, 1461–1474. https://doi.org/10.1016/j.biocon.2008.04.011
  121. Nieto-Samaniego, Á.F., Alaniz-Alvarez, S.A. & Camprubí, A. (2007) Mesa Central of Mexico: stratigraphy, structure, and Cenozoic tectonic evolution. Geological Society of America Special Papers, 422, 41–70. https://doi.org/10.1130/2007.2422(02)
  122. Nolasco-Soto, J., González-Astorga, J., Espinosa de los Monteros, A. & Favila, M.E. (2023) Evolutionary history and diversity in the ball roller beetle Canthon cyanellus. Frontiers in Ecology and Evolution, 10, 1066439. https://doi.org/10.3389/fevo.2022.1066439
  123. Nolasco-Soto, J., González-Astorga, J., Espinosa de los Monteros, A., Galante-Patiño, E. & Favila, M.E. (2017) Phylogeographic structure of Canthon cyanellus (Coleoptera: Scarabaeidae), a Neotropical dung beetle in the Mexican Transition Zone: Insights on its origin and the impacts of Pleistocene climatic fluctuations on population dynamics. Molecular Phylogenetics and Evolution, 109, 180–190. https://doi.org/10.1016/j.ympev.2017.01.004
  124. O’Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, S.A., Cione, A.L., Collins, L.S., de Queiroz, A., Farris, D.W., Norrisn, R.D., Stallard, R.F., Woodburne, M.O., Aguilera, O., Aubry, M.P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque-Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard-Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello-Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Wermeij, G.J. & Jackson, J.B.C. (2016) Formation of the Isthmus of Panama. Science Advances, 2, e1600883. https://doi.org/10.1126/sciadv.1600883
  125. O’Leary, M.A., Bloch, J.I., Flynn, J.J., Gaudin, T.J., Giallombardo, A., Giannini, N.P., Goldberg, S.L., Kraatz, B.P., Luo, Z.X., Meng, J., Ni, X., Novacek, M.J., Perini, F.A., Randall, Z.S., Rougier, G.W., Sargis, E.J., Silcox, M.T., Simmons, N.B., Spaulding, M., Velazco, P.M., Weksler, M., Wible, J.R. & Cirranello, A.L. (2013) The Placental mammal ancestor and the post–K-Pg radiation of placentals. Science, 339, 662–667. https://doi.org/10.1126/science.1229237
  126. Oliveros, C.H., Andersen, M.J., Hosner, P.A., Mauck III, W.M., Sheldon, F.H., Cracraft, J. & Moyle, R.G. (2019) Rapid Laurasian diversification of a pantropical bird family during the Oligocene-Miocene transition. Ibis, 162, 137–152. https://doi.org/10.1111/ibi.12707
  127. Palacios-Chávez, R. & Rzedowski, J. (1993) Estudio palinológico de las floras fósiles del Mioceno inferior y principios del Mioceno Medio en la región de Pichucalco, Chiapas, México. Acta Botánica Mexicana, 24, 1–96. https://doi.org/10.21829/abm24.1993.677
  128. Posada, D. (2008) JModelTest: phylogenetic model averaging. Molecular Biology Evolution, 25, 1253–1256. https://doi.org/10.1093/molbev/msn083
  129. Poux, C., Chevret, P., Huchon, D., de Jong, W.W. & Douzery, E.J.P. (2006) Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Systematic Biology, 55, 228–244. https://doi.org/10.1080/10635150500481390
  130. Price, D. (2009) Phylogeny and biogeography of the dung beetle genus Phanaeus (Coleoptera: Scarabaeidae). Systematic Entomology, 34, 137–150. https://doi.org/10.1111/j.1365-3113.2008.00443.x
  131. Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer. Version 1.6. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 24 January 2024)
  132. Renner S. (2004) Plant dispersal across the tropical Atlantic by wind and sea currents. International Journal of Plant Sciences, 165, S23‒S33. https://doi.org/10.1086/383334
  133. Rodrigues-Aquino, P.S., Gonçalves de Jesus, F., Cândido Rocha, E., Castro Della Lucia, T.M., Cola Zanuncio, J. & da Silva Araújo, M. (2018) Predation rates of a beetle (Canthon virens) that kills female leaf-cutting ants (Atta spp.). International Journal of Agriculture and Biology, 20, 1247–1250.
  134. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  135. Ruiz-Sánchez, E. & Ornelas, J.F. (2014) Phylogeography of Liquidambar styraciflua (Altingiaceae) in Mesoamerica: survivors of a Neogene widespread temperate forest (or cloud forest) in North America? Ecology and Evolution, 4, 311–328. https://doi.org/10.1002/ece3.938
  136. Sánchez-Huerta, J.L., Tonelli, M., Zunino, M. & Halffter, G. (2015) Redescription of Onthophagus halffteri Zunino (Coleoptera: Scarabaeidae: Scarabaeinae), with Ecological and distributional notes. The Coleopterists Bulletin, 69, 225–230. https://doi.org/10.1649/0010-065X-69.2.225
  137. Sánchez-Huerta, J.L., Zunino, M. & Halffter, G. (2018) A new species of American Onthophagus Latreille (Coleoptera: Scarabaeidae: Scarabaeinae) associated with rodent (Geomydae) burrows. The Coleopterists Bulletin, 72, 407–416. https://doi.org/10.1649/0010-065X-72.3.407
  138. Sanmartin, I., Enghoff, H. & Ronquist, F. (2001) Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society, 73, 345–390. https://doi.org/10.1006/bijl.2001.0542
  139. Schoolmeesters, P. (2023) World Scarabaeidae Database. Catalogue of Life. Naturalis, Leiden. Available from: https://www.checklistbank.org/dataset/272972/source/1027 (accessed 24 January 2024) https://doi.org/10.48580/ddz4x-38g
  140. Schwery, O. & O’Meara, B.C. (2021) Age, origin, and biogeography: unveiling the factors behind the diversification of dung beetles. BioRxiv. [published online] https://doi.org/10.1101/2021.01.26.428346
  141. Silvestro, D., Tejedor, M.F., Serrano-Serrano, M.L., Loiseau, O., Rossier, V., Rolland, J., Zizka, A., Höhna, S., Antonelli, A. & Salamin, N. (2019) Early arrival and climatically-linked geographic expansion of New World monkeys from tiny African ancestors. Systematic Biology, 68, 78‒92. https://doi.org/10.1093/sysbio/syy046
  142. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701. https://doi.org/10.1093/aesa/87.6.651
  143. Sole, C.L. & Scholtz, C.H. (2010) Did dung beetles arise in Africa? A phylogenetic hypothesis based on five gene regions. Molecular Phylogenetics and Evolution, 56, 631–641. https://doi.org/10.1016/j.ympev.2010.04.023
  144. Solórzano-Kraemer, M.M. (2007) Systematics, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Palaeontographica, Abteilung A, 282, 1–133. https://doi.org/10.1127/pala/282/2007/1
  145. Suárez-Mota, M.E., Téllez-Valdés, O., Lira-Saade, R. & Villaseñor, J.L. (2013) Una regionalización de la faja volcánica transmexicana con base en su riqueza florística. Botanical Sciences, 91, 93–105. https://doi.org/10.17129/botsci.405
  146. Takiya, D.M., Tran, P.L., Dietrich, C.H. & Moran, N.C. (2006) Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Molecular Ecology, 15, 4175–4191. https://doi.org/10.1111/j.1365-294X.2006.03071.x
  147. Tarasov, S. & Dimitrov, D. (2016) Multigene phylogenetic analysis redefines dung beetles relationships and classification (Coleoptera: Scarabaeidae: Scarabaeinae). BMC Evolutionary Biology, 16, 257. https://doi.org/10.1186/s12862-016-0822-x
  148. Tarasov, S & Génier, F. (2015) Innovative Bayesian and Parsimony phylogeny of dung beetles (Coleoptera, Scarabaeidae, Scarabaeinae) enhanced by ontology-based partitioning of morphological characters. PLoS ONE, 10, e0116671. https://doi.org/10.1371/journal.pone.0116671
  149. Tarasov, S., Vaz-de-Mello, F.Z., Krell, F.T. & Dimitrov, D. (2016) A review and phylogeny of Scarabaeine dung beetle fossils (Coleoptera: Scarabaeidae: Scarabaeinae), with the description of two Canthochilum species from Dominican amber. PeerJ, 4, e1988. https://doi.org/10.7717/peerj.1988
  150. Tello, F., Rossini, M., Pino, M. & Verdú, J.R. (2021a) Nuevos registros fósiles de Onthophagus pilauco Tello, Verdú, Rossini y Zunino, 2021 (Coleoptera: Scarabaeidae: Scarabaeinae), revelan un patrón morfológico único entre los Onthophagus americanos. Revista Chilena de Entomología, 47, 935–949. https://doi.org/10.35249/rche.47.4.21.19
  151. Tello, F., Verdú, J.R., Rossini, M. & Zunino, M. (2021b) Onthophagus pilauco sp. nov. (Coleoptera, Scarabaeidae): evidence of beetle extinction in the Pleistocene-Holocene transition in Chilean Northern Patagonia. ZooKeys, 1043, 133–145. https://doi.org/10.3897/zookeys.1043.61706
  152. Upham, N.S., Esselstyn, J.A. & Jetz, W. (2019) Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology, 17, e3000494. https://doi.org/10.1371/journal.pbio.3000494
  153. Vidal, N., Azvolinsky, A., Cruaud, C. & Hedges, S.B. (2008) Origin of tropical American burrowing reptiles by transatlantic rafting. Biology Letters, 4, 115–118. https://doi.org/10.1098/rsbl.2007.0531
  154. Vinther, J., Nicholls, R. & Kelly, D.A. (2021) A cloacal opening in a non-avian dinosaur. Current Biology, 31, R182–R183. https://doi.org/10.1016/j.cub.2020.12.039
  155. Voelker, G., Rohwer, S., Outlaw, D.C. & Bowie, R.C.K. (2008) Repeated trans-Atlantic dispersal catalyzed a global songbird radiation. Global Ecology and Biogeography, 18, 41–49. https://doi.org/10.1111/j.1466-8238.2008.00423.x
  156. Vršanský, P., van de Kamp, T., Azar, D., Prokin, A., Vidlička, L. & Vagovič, P. (2013) Cockroaches probably cleaned up after dinosaurs. PLoS One, 8, e80560. https://doi.org/10.1371/journal.pone.0080560
  157. Whiting, A.S., Sites, J.W. Jr., Pellegrino, K.C.M. & Rodrigues, M.T. (2006) Comparing alignment methods for inferring the history of the New World lizard genus Mabuya (Squamata: Scincidae). Molecular Phylogenetics and Evolution, 38, 719–730. https://doi.org/10.1016/j.ympev.2005.11.011
  158. Wolfe, J.A. (1978) A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. American Scientist, 66, 694–703.
  159. Young, O.P. (1981) The attraction of Neotropical Scarabaeinae (Coleoptera: Scarabaeidae) to reptile and amphibian fecal material. The Coleopterists Bulletin, 35, 345–348.
  160. Yu, Y., Blair, C. & He, X. (2020) RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Molecular Biology and Evolution, 37, 604–606. https://doi.org/10.1093/molbev/msz257
  161. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693. https://doi.org/10.1126/science.1059412
  162. Zanazzi, A., Kohn, M.J., MacFadden, B.J. & Terry Jr., D.O. (2007) Large temperature drop across the Eocene-Oligocene transition in central North America. Nature, 445, 639–642. https://doi.org/10.1038/nature05551
  163. Zunino, M. & Halffter, G. (1988) Análisis taxonómico, ecológico y biogeográfico de un grupo americano de Onthophagus (Coleoptera: Scarabaeidae). Museo Regionale di Scienze Naturali, Monografie, 9, 1–211.
  164. Zunino, M. & Halffter, G. (1997) Sobre Onthophagus Latreille, 1802 americanos (Coleoptera: Scarabaeidae: Scarabaeinae). Elytron, 11, 157–178.
  165. Zunino, M. & Halffter, G. (2007) The association of Onthophagus Latreille, 1802 beetles (Coleoptera: Scarabaeinae) with vertebrate burrows and caves. Elytron, 21, 17–55.