Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-02-12
Page range: 91-111
Abstract views: 15
PDF downloaded: 0

The first cryptic genus of Ixodida, Cryptocroton n. gen. for Amblyomma papuanum Hirst, 1914: a tick of North Queensland, Australia, and Papua New Guinea

Department of Parasitology; School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane; Qld; 4072; Australia
Department of Parasitology; School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane; Qld; 4072; Australia
Epidemiology; Parasites and Vectors; Agricultural Research Council; Onderstepoort Veterinary Research; Onderstepoort 0110; South Africa; The Department of Life and Consumer Sciences; University of South Africa; Florida 1709; South Africa.; The Department of Veterinary Tropical Diseases; University of Pretoria; Pretoria 0110; South Africa.
US National Tick Collection; Institute for Coastal Sciences; Georgia Southern University; Statesboro; GA; 30460; USA; Department of Biology; Georgia Southern University; Statesboro; GA; 30460; USA.
Queensland Museum; PO Box 3300; South Brisbane; 4101; Qld; Australia
CSIRO; Health and Biosecurity; Canberra; ACT; Australia
Centre for Bioinnovation and School of Science; Technology and Engineering; University of the Sunshine Coast; Maroochydore; Qld; 4556; Australia
Department of Parasitology; School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane; Qld; 4072; Australia
Medical Entomology; Environmental Health Directorate; Western Australian Department of Health; Mount Claremont; WA; 6010; Australia
Institute for Applied Ecology; Faculty of Science & Technology; University of Canberra; Bruce; 2617; ACT; Australia
Department of Parasitology; School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane; Qld; 4072; Australia
Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Hokkaido 060–0818; Japan
Acari new genus Ixodida Papua New Guinea Australia echidna cassowary

Abstract

We describe a new genus Cryptocroton n. gen. for Amblyomma papuanum Hirst, 1914, a tick of North Queensland, Australia, and Papua New Guinea.

 

References

  1. Bakkes, D.K., De Klerk, D., Latif, A.A. & Mans, B.J. (2018) Integrative taxonomy of Afrotropical Ornithodoros (Ornithodoros) (Acari: Ixodida: Argasidae). Ticks & Tick Borne Diseases, 9, 1006–1037. https://doi.org/10.1016/j.ttbdis.2018.03.024
  2. Bakkes, D.K., Chitimia-Dobler, L., Matloa, D., Oosthuysen, M., Mumcuoglu, K.Y., Mans, B.J. & Matthee, C.A. (2020). Integrative taxonomy and species delimitation of Rhipicephalus turanicus (Acari: Ixodida: Ixodidae). International Journal of Parasitology, 50, 577–594. https://doi.org/10.1016/j.ijpara.2020.04.005
  3. Barker, D., Seeman, O.D. & Barker, S.C. (2021) The development of tick taxonomy and systematics in Australia and contributors and with comments on the place of Australasia in the study of the phylogeny and evolution of the ticks. Systematic & Applied Acarology, 26, 1793–1832. https://doi.org/10.11158/saa.26.10.1
  4. Barker, D., Kelava, S., Shao, R.F., Seeman, O.D., Jones, M.K., Nakao, R., Barker, S.C. & Apanaskevich, D.A. (2022) Description of the female, nymph and larva and mitochondrial genome, and redescription of the male of Ixodes barkeri Barker, 2019 (Acari: Ixodidae), from the short-beaked echidna, Tachyglossus aculeatus, with a consideration of the most suitable subgenus for this tick. Parasites & Vectors, 15, 117. https://doi.org/10.1186/s13071-022-05165-2
  5. Barker, S.C. & Barker, D. (2023) Ticks of Australasia: 125 species of ticks in and around Australia. Zootaxa, 5253 (1), 1–670. https://doi.org/10.11646/zootaxa.5253.1.1
  6. Barker, S.C. & Burger, T.D. (2018) Two new genera of hard ticks, Robertsicus n. gen., and Archaeocroton n. gen., and the solution to the mystery of Hoogstraal’s and Kaufman’s “primitive” tick from the Carpathian Mountains. Zootaxa, 4500 (4), 543–552. https://doi.org/10.11646/zootaxa.4500.4.4
  7. Beati, L., Nava, S., Burkman, E.J., Barros-Battesti, D.M., Labruna, M.B., Guglielmone, A.A., Caceres, A.G., Guzman-Cornejo, C.M., Leon, R., Durden, L.A. & Faccini, J.L.H. (2013) Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evolutionary Biology, 13, 267. https://doi.org/10.1186/1471-2148-13-267
  8. Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P.F. (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics & Evolution, 69, 313–319. https://doi.org/10.1016/j.ympev.2012.08.023
  9. Burger, T.D., Shao, R., Beati, L., Miller, H. & Barker, S.C. (2012) Phylogenetic analysis of ticks (Acari: Ixodida) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic. Molecular Phylogenetics & Evolution, 64, 45–55. https://doi.org/10.1016/j.ympev.2012.03.004
  10. Burger, T.D., Shao, R. & Barker, S.C. (2014) Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Molecular Phylogenetics & Evolution, 76, 241–253. https://doi.org/10.1016/j.ympev.2014.03.017
  11. Campbell, N.J.H. & Barker, S.C. (1998) An unprecedented major rearrangement in an arthropod mitochondrial genome. Molecular Biology & Evolution, 15, 1786–1787. https://doi.org/10.1093/oxfordjournals.molbev.a025904
  12. Camicas, J.L., Hervy, J.P., Adam, F. & Morel, P.C. (1998) Les tiques du monde (Acarida, Ixodida). Nomenclature, stades decrits, hotes, repartition (especes decrites avant le 1/01/96). Orstom Editions, Paris, 233 pp.
  13. Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  14. Chen, Y., Ye, W., Zhang, Y. & Xu, Y. (2015) High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Research, 43, 7762–7768. https://doi.org/10.1093/nar/gkv784
  15. Chen, S., Zhou, Y., Chen, Y. & Gu, J. (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560
  16. Clifford, C.M., Kohls, G.M. & Sonenshine, D.E. (1964) The systematics of the subfamily Ornithodorinae (Acarina: Argasidae). I. The genera and subgenera. Annals of the Entomological Society of America, 57, 429–437. https://doi.org/10.1093/aesa/57.4.429
  17. Cooley, R.A. & Kohls, G.M. (1940) Two new species of Argasidae (Acarina: Ixodoidea). Public Health Reports, 55, 925–933. https://doi.org/10.2307/4583300
  18. Fiser, C., Robinson, C.T. & Malard, F. (2018) Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology, 27, 613–635. https://doi.org/10.1111/mec.14486
  19. Gagnon, E., Hughes, C.E., Lewis, G.P. & Bruneau, A. (2015) A new cryptic species in a new cryptic genus in the Caesalpinia group (Leguminosae) from the seasonally dry inter-Andean valleys of South America. Taxon, 64, 468–490. https://doi.org/10.12705/643.6
  20. Guglielmone, A.A., Petney, T.N. & Robbins, R.G. (2020) Ixodidae (Acari: Ixodoidea): descriptions and redescriptions of all known species from 1758 to December 31, 2019. Zootaxa, 4871 (1), 1–322. https://doi.org/10.11646/zootaxa.4871.1.1
  21. Hirst, S. (1914) Report on the Arachnida and Myriapoda collected by the British Ornithologist’s Union Expedition and the Wollaston Expedition in Dutch New Guinea. Transactions of the Zoological Society of London, 20, 325–334. https://doi.org/10.1111/j.1469-7998.1912.tb07838.x
  22. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology & Evolution, 35, 518–522. https://doi.org/10.1093/molbev/msx281
  23. Hornok, S., Kontschán, J., Takács, N., Chaber, A.L., Halajian, A., Abichu, G., Kamani, J., Szekeres, S. & Plantard, O. (2020) Molecular phylogeny of Amblyomma exornatum and Amblyomma transversale, with reinstatement of the genus Africaniella (Acari: Ixodidae) for the latter. Ticks & Tick Borne Diseases, 11, 101494. https://doi.org/10.1016/j.ttbdis.2020.101494
  24. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  25. Keirans, J.E., King, D.R. & Sharrad, R.D. (1994) Aponomma (Bothriocroton) glebopalma, n. subgen., n. sp., and Amblyomma glauerti, n. sp. (Acari: Ixodida: Ixodidae), parasites of monitor lizards (Varanidae) in Australia. Journal of Medical Entomology, 31, 132–147. https://doi.org/10.1093/jmedent/31.1.132
  26. Kelava, S., Mans, B.J., Shao, R., Moustafa, M.A.M., Matsuno, K., Takano, A., Kawabata, H., Sato, K., Fujita, H., Ze, C., Plantard, O., Hornok, S., Gao, S., Barker, D., Barker, S.C. & Nakao, R. (2021) Phylogenies from mitochondrial genomes of 120 species of ticks: Insights into the evolution of the families of ticks and of the genus Amblyomma. Tick Ticks & Tick Borne Diseases, 12, 101577. https://doi.org/10.1016/j.ttbdis.2020.101577
  27. Kelava, S., Mans, B.J., Shao, R., Barker, D., Teo, E.J.M., Chatanga, E., Gofton, A.W., Moustafa, M.A.M., Nakao, R. & Barker, S.C. (2023) Seventy-eight entire mitochondrial genomes and nuclear rRNA genes provide insight into the phylogeny of the hard ticks, particularly the Haemaphysalis species, Africaniella transversale and Robertsicus elaphensis. Ticks &Tick Borne Diseases, 14, 102070. https://doi.org/10.1016/j.ttbdis.2022.102070
  28. Klompen, H., Dobson, S.J. & Barker, S.C. (2002) A new subfamily, Bothriocrotoninae n. subfam., for the genus Bothriocroton Keirans, King & Sharrad, 1994 status amend. (Ixodida: Ixodidae), and the synonymy of Aponomma Neumann, 1899 with Amblyomma Koch, 1844. Systematic Parasitology, 53, 101–107. https://doi.org/10.1023/A:1020466007722
  29. Kneubehl, A.R., Muñoz-Leal, S., Filatov, S., de Klerk, D.G., Pienaar, R., Lohmeyer, K.H., Bermúdez, S.E., Suriyamongkol, T., Mali, I., Kanduma, E., Latif, A.A., Sarih, M., Bouattour, A., de León, A.A.P., Teel, P.D., Labruna, M.B., Mans, B.J. & Lopez, J.E. (2022) Amplification and sequencing of entire tick mitochondrial genomes for a phylogenomic analysis. Scientific Reports, 12, 19310. https://doi.org/10.1038/s41598-022-23393-5
  30. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology & Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260
  31. Li, H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. https://doi.org/10.1093/bioinformatics/bty191
  32. Lowe, T.M. & Chan, P.P. (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44, W54–W57. https://doi.org/10.1093/nar/gkw413
  33. Mans, B., Featherston, J., Kvas, M., Pillay, K.A., de Klerk, D.G., Pienaar, R., de Castro, M.H., Schwan, T.G., Lopez, J.E., Teel, P., de Leon, A.A.P., Sonenshine, D.E., Egekwu, N.I., Bakkes, D.K., Heyne, H., Kanduma, E.G., Nyangiwe, N., Bouattour, A. & Latif, A.A. (2019) Argasid and ixodid systematics: implications for soft tick evolution and systematics, with a new argasid species list. Ticks & Tick-Borne Diseases, 10, 219–240. https://doi.org/10.1016/j.ttbdis.2018.09.010
  34. Mohamed, W.M.A., Moustafa, M.A.M., Thu, M.J., Kakisaka, K., Chatanga, E., Ogata, S., Hayashi, N., Taya, Y., Ohari, Y., Naguib, D., Qiu, Y., Matsuno, K., Bawm, S., Htun, L.L., Barker, S.C., Katakura, K., Ito, K., Nonaka, N. & Nakao, R. (2022) Comparative mitogenomics elucidates the population genetic structure of Amblyomma testudinarium in Japan and a closely related Amblyomma species in Myanmar. Evolutionary Applications, 15, 1062–1078. https://doi.org/10.1111/eva.13426
  35. Nava, S., Beati, L., Labruna, M.B., Cáceres, A.G., Mangold, A.J. & Guglielmone, A.A. (2014) Reassessment of the taxonomic status of Amblyomma cajennense (Fabricius, 1787) with the description of three new species, Amblyomma n. sp., Amblyomma interandinum n. sp. and Amblyomma patinoi n. sp., and reinstatement of Amblyomma mixtum Koch, 1844 and Amblyomma sculptum Berlese, 1888 (Ixodida: Ixodidae). Ticks & Tick-borne Diseases, 5, 252–276. https://doi.org/10.1016/j.ttbdis.2013.11.004
  36. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P.A. (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Research, 27, 824–834. https://doi.org/10.1101/gr.213959.116
  37. Rambaut, A. (2009) Tracer. Version 1.5. Available from: http://tree.bio.ed.ac.uk/software/tracer/ (accessed 5 January 2023)
  38. Rambaut, A. (2012) FigTree. Version 1.4. Available from: http://tree.bio.ed.ac.uk/software/FigTree/ (accessed 5 January 2023)
  39. Robbins, R.G. & Bush, S.E. (2006) First report of Amblyomma papuanum Hirst (Acari : Ixodida: Ixodidae) from the dwarf cassowary, Casuarius bennetti Gould (Aves : Struthioniformes: Casuariidae), with additional records of parasitism of Casuarius spp. by this tick. Proceedings of the Entomological Society of Washington, 108, 1002–1004.
  40. Roberts, F.H.S. (1953) The Australian species of Aponomma and Amblyomma (Ixodoidea). Australian Journal of Zoology, 1, 111–161. https://doi.org/10.1071/ZO9530111
  41. Roberts, F.H.S. (1970) Ticks of Australia. CSIRO, Melbourne, 267 pp.
  42. Robinson, L.E. (1926) Ticks. A Monograph of the Ixodoidea. Part IV. The Genus Amblyomma. Cambridge University Press, Cambridge, 302 pp.
  43. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  44. Shao, R. & Barker, S.C. (2007) Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology, 134, 153–167. https://doi.org/10.1017/S0031182006001429
  45. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033