Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-12-12
Page range: 297-324
Abstract views: 252
PDF downloaded: 25

Coenura Bigot as a valid genus: A molecular and morphological phylogenetic analysis of Pelecorhynchus Macquart sensu lato (Diptera: Pelecorhynchidae)

Instituto de Entomología; Facultad de Ciencias Básicas; Universidad Metropolitana de Ciencias de la Educación; Santiago; Chile
Centro de Investigación en Recursos Naturales y Sustentabilidad; Universidad Bernardo O’Higgins; Santiago; Chile
Centro de Investigación en Recursos Naturales y Sustentabilidad; Universidad Bernardo O’Higgins; Santiago; Chile
Laboratorio Sistemática y Biogeografía; Universidad Industrial de Santander; Bucaramanga; Colombia
Diptera Andean Region Brachycera morphology systematics Tabanomorpha

Abstract

The phylogeny of the genus Pelecorhynchus Macquart (Diptera: Pelecorhynchidae) was analyzed using three genes, cytochrome oxidase I, 28S ribosomal DNA, and CAD5, with 112 morphological characteristics. A total of 59 specimens (13 outgroups and 46 ingroups) were included in the analysis. The monophyly of Pelecorhynchidae was recovered under all analyses, with Glutops Burgess as the sister group of Pelecorhynchus s.l., while Pseudoerinna jonesi (Cresson) was the sister group. Within “Pelecorhynchus” there are three main clades with unresolved affinities. Clade I was formed by P. personatus (Walker), P. vulpes (Macquart), P. penai Pechuman and P. kroeberi (Lindner), a well-supported clade. Clade II corresponds to the set of species of “Chilean Pelecorhynchus”, conformed to P. biguttatus (Philippi), P. toltensis Llanos & González, P. elegans (Philippi), P. xanthopleura (Philippi), P. hualqui Llanos & González, and P. longicauda (Bigot), a well-supported clade. Clade III is represented exclusively by P. fulvus Ricardo, which has an exclusively Australian distribution. The monophyly of P. fulvus and its nomenclature remain an open question, as only a single species of this taxon was included. Our study demonstrated that the concept of Pelecorhynchus should be revisited. Therefore, we restore Coenura Bigot, 1857 to generic status for part of the southern South American species of “Pelecorhynchus” conformed by the species C. biguttata, C. elegans, C. hualqui, C. longicauda, C. toltensis, and C. xanthopleura which are monophyletic, supported by molecular and morphological data, and consistent with a Chilean distribution.

 

References

  1. Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705
  2. Almeida, E.A.B., Pie, M.R., Brady, S.G. & Danforth, B.N. (2012) Biogeography and diversification of colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world. Journal of Biogeography, 39 (3), 526–544. https://doi.org/10.1111/j.1365-2699.2011.02624.x
  3. Amorim, D.S., Santos C.M.D. & Oliveira, S.S. (2009) Allochronic taxa as an alternative model to explain circumantarctic disjunctions. Systematic Entomology, 34 (1), 2–9. https://doi.org/10.1111/j.1365-3113.2008.00448.x
  4. Armesto, J.J., Smith-Ramírez, C. & Rozzi, R. (2001) Conservation strategies for biodiversity and indigenous people in Chilean forest ecosystems. Journal of the Royal Society of New Zealand, 31 (4), 865–877. https://doi.org/10.1080/03014223.2001.9517681
  5. Armesto J.J., Aravena J.C., Villagrán C., Pérez C. & Parker G. (1996) Bosques templados de la cordillera de la costa. In: Armesto J., Villagrán C. & Kalin M. (Eds.), Ecología de los Bosques Nativos de Chile. Editorial Universitaria, Santiago, 470 pp.
  6. Armesto, J.J., Rossi, R., Smith-Ramírez, C. & Arroyo, M.T.K. (1998) Conservation target in South American Temperate forests. Science, 282 (5392), 1271–1272. https://doi.org/10.1126/science.282.5392.1271
  7. Arroyo, M.T.K., Riveros, M., Peñaloza, A., Cavieres, L. & Faggi, A.M (1996) Phytogeographic Relationships and Regional Richness Patterns of the Cool Temperate Rainforest Flora of Southern South America. In: Lawford R.G., Fuentes E., Alaback P.B. (Eds.), High-Latitude Rainforests and Associated Ecosystems of the West Coast of the Americas. Ecological Studies (Analysis and Synthesis), 116, 134–172. https://doi.org/10.1007/978-1-4612-3970-3_8
  8. Bigot, J.M.F. (1857) Diptères nouveaux provenant du Chili. Annales de la Société Entomologique de France, (3) 5, 277–308, pls. 6–7.
  9. Burgess, E. (1878) Two interesting American Diptera, Glutops singularis and Epibates osten-sackenii. Proceedings of the Boston Society of Natural History (1876-1878), 19, 320–324, 1 pl.
  10. Christie, D.A., Boninsegna, J.A., Cleaveland, M.K., Lara, A., Le Quesne, C., Morales, M.S., Mudelsee, M., Stahle, D.W. & Villalba, R. (2011) Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings. Climate Dynamics, 36 (7–8), 1505–1521.
  11. https://doi.org/10.1007/s00382-009-0723-4
  12. Courtney, G., Pape, T., Schevington, J. & Sinclair, B. (2009) Chapter 9. Biodiversity of Diptera. In: Foottit, R.G. & Adler, P.H. (Eds.), Insect Biodiversity: Science and Society. UK Blackwell Publishing, pp. 185–222. https://doi.org/10.1002/9781444308211.ch9
  13. Cresson, E.T., Jr. (1919) Dipterological notes and descriptions. Proceedings of the Academy of Natural Sciences of Philadelphia, 71, 171–194.
  14. Cumming, J.M. & Wood, D.M. (2017) 3. Adult morphology and terminology. In: Kirk-Spriggs, A.H. & Sinclair, B.J. (Eds.), Manual of Afrotropical Diptera. Volume 1. Introductory chapters and keys to Diptera families. Suricata 4. South African National Biodiversity Institute, Pretoria, pp. 89–133.
  15. Daniels, G. (1989) 27. Family Pelecorhynchidae. In: Evenhuis, N.L. (Ed.), Catalog of the Diptera of the Australasian and Oceanian regions. Bishop Museum Special Publication, 86, 275–276.
  16. Echeverría, C., Coomes, D., Newton, A., Rey-Benayas, J.M. & Lara, A. (2007) Impacts of forest fragmentation on species composition and forest structure in the temperate landscape in southern Chile. Global Ecology and Biogeography, 16 (4), 426–439. https://doi.org/10.1111/j.1466-8238.2007.00311.x
  17. Enderlein, G. (1922) Ein neues Tabanidensystem. Mitteilungen aus dem Zoologischen Museum in Berlin, 10, 333–351. https://doi.org/10.1002/mmnz.4830100205
  18. Enderlein, G. (1925) Studien an blutsaugenden Insekten 1. Grundlagen eines neuen Systems der Tabaniden. Mitteilungen aus dem Zoologischen Museum in Berlin, 10, 333–351, 11, 253–409.
  19. Evenhuis, N.L. (2021) The insect and spider collections of the world website. Available from: http://hbs.bishopmuseum.org/codens/ (accessed July 2023)
  20. Fabricius, J.C. (1805) Systema antliatorum secundum ordines, genera, species, adiectis synonymis, locis, observationibus, descriptionibus. C. Reichard, Brunsvigae [= Brunswick]. i–xiv + [15]–372 + [4] + 30 pp. https://doi.org/10.5962/bhl.title.15806
  21. Fachin, D.A., Santos, C.M.D. & Amorim, D.S. (2018) First two species of Austroleptis Hardy (Diptera: Brachycera: Austroleptidae). Zootaxa, 4369 (4), 557–574. https://doi.org/10.11646/zootaxa.4369.4.6
  22. Fachin, D.A., Santos, C.M.D. & Amorim, D.S. (2020) Endemism within endemism: a new species of Austroleptis Hardy, 1920 (Diptera: Austroleptidae) from the Brazilian Atlantic Forest highlands. Zootaxa, 4803 (3), 483–494. https://doi.org/10.11646/zootaxa.4803.3.4
  23. Ferguson, E.W. (1926) Additional notes on the nomenclature of Australian Tabanidae. Bulletin of the Entomological Research, 16, 293–306. https://doi.org/10.1017/S0007485300028558
  24. Fuentes-Castillo, T., Hernández, H.J. & Pliscoff, P. (2020) Hotspots and ecoregion vulnerability driven by climate change velocity in Southern South America. Regional Environmental Change, 20, 27. https://doi.org/10.1007/s10113-020-01595-9
  25. Givnish, T.J., Spalink, D., Ames, M., Lyon, S.P., Hunter, S.J., Zuluaga, A., Doucette, A., Caro, G.G., McDaniel, J., Clements, M.A., Arroyo, M.T.K., Endara, L., Kriebel, R., Williams, N.H. & Cameron, K.M. (2016) Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. Journal of Biogeography, 43 (19), 1905–1916. https://doi.org/10.1111/jbi.12854
  26. González, C.R. & Elgueta, M. (2020) A catalog of Pelecorhynchidae (Diptera: Tabanomorpha) from Chile. Zootaxa, 4809 (1), 156–164. https://doi.org/10.11646/zootaxa.4809.1.9
  27. González, C.R. & Elgueta, M. (2022) Redescription of Pelecorhynchus kroeberi (Lindner), a Patagonian species rediscovered after more than 100 years in Chile (Diptera: Pelecorhynchidae). Papeis Avulsos de Zoologia, 62, e202262069. http://doi.org/10.11606/1807-0205/2022.62.069
  28. Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27 (2), 221–224. https://doi.org/10.1093/molbev/msp259
  29. Hangel, J.C., Assmann, T., Schimitt, T. & Avise, J.C. (2009) Relict species: from past to future. In: Habel, J.C. & Assmann, T. (Eds.), Relict Species: Phylogeography and Conservation Biology. Springer-Verlag Berlin. Heidelberg, pp. 1–5. https://doi.org/10.1007/978-3-540-92160-8_1
  30. Harrison, S. (2004) The Pleistocene glaciations of Chile. In: Ehlers, J. & Gibbard, P.L. (Eds.), Quaternary glaciations–extent and chronology. Part III: South America, Asia, Africa, Australasia, Antarctica. Amsterdam, pp. 89–103. https://doi.org/10.1016/S1571-0866(04)80115-5
  31. Hinojosa, L.F. & Villagrán, C. (1997) Historia de los bosques del sur de Sudamérica, I: antecedentes paleobotánicos, geológicos y climáticos del Terciario del cono sur de América. Revista Chilena de Historia Natural, 70, 225–239.
  32. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14 (6), 587–589. https://doi.org/10.1038/nmeth.4285
  33. Kass, R.E. & Raftery, A.E. (1995) Bayes factors. Journal of the American Statistical Association, 90, 773–795. https://doi.org/10.1080/01621459.1995.10476572
  34. Kerr, P.H. (2010) Phylogeny and classification of Rhagionidae, with implications for Tabanomorpha (Diptera: Brachycera). Zootaxa, 2591, 1–133. https://doi.org/10.11646/zootaxa.2592.1.1
  35. Klages, J.P., Salzmann, U., Bickert, T., Hillenbrand, C.D., Gohl, K., Kuhn, G., Bohaty, S.M., Titschack, J., Müller, J., Frederichs, T., Bauersachs, T., Ehrmann, W., van de Flierdt, T., Pereira, P.S., Larter, R.D., Lohmann, G., Niezgodzki, I., Uenzelmann-Neben, G., Zundel, M., Spiegel, C., Mark, C., Chew, D., Francis, J.E., Nehrke, G., Schwarz, F., Smith, J.A., Freudenthal, T., Esper, O., Pälike, H., Ronge, T.A., Dziadek, R. & Science Team of Expedition PS104 (2020) Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 580 (7801), 81–86. https://doi.org/10.1038/s41586-020-2148-5
  36. Kröber, O. (1930a) Die Pelecorhynchinae und Melpiinae Südamerikas (Dipteren, Tabanidae). Mitteilungen aus dem Zoologische Museum in Hamburg, 44, 149–196.
  37. Kröber, O. (1930b) Tabanidae. In: Diptera of Patagonia and South Chile. Part V. Fascicle 2. British Museum of Natural History, London, pp. 106–161.
  38. Kunzmann, L. (2007) Araucariaceae (Pinopsida): Aspects in palaeobiogeography and palaeobiodiversity in the Mesozoic. Zoologischer Anzeiger, 246 (4), 257–277. https://doi.org/10.1016/j.jcz.2007.08.001
  39. Lamas, C.J.E. & Nihei, S.S. (2007) Biogeographic analysis of Crocidiinae (Diptera, Bombyliidae): finding congruence among morphological, molecular, fossil and paleogeographical data. Revista Brasileira de Entomologia, 51 (3), 267–274. https://doi.org/10.1590/S0085-56262007000300003
  40. Lara, A., Solari, M.E., Prieto M.R. & Peña, M.P. (2012) Reconstrucción de la cobertura de la vegetación y uso del suelo hacia 1550 y sus cambios a 2007 en la ecorregión de los bosques valdivianos lluviosos de Chile (35º - 43º 30’S). Bosque, 33 (1), 3–23. https://doi.org/10.4067/S0717-92002012000100002
  41. Landuyt, D., De Lombaerde, E., Perring, M. P., Hertzog, L. R., Ampoorter, E., Maes, S.L., De Frenne, P., Ma, S., Proesmans, W., Blondeel, H., Sercu, B.K., Wang, B., Wasof, S. & Verheyen, K. (2019) The functional role of temperate forest understorey vegetation in a changing world. Global change biology, 25 (11), 3625–3641. https://doi.org/10.1111/gcb.14756
  42. Laurito, M., Oliveira, T.M., Almirón, W.R. & Sallum, M.A. (2013) COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil. Memórias do Instituto Oswaldo Cruz, 108 (Suppl 1), 110–122. https://doi.org/10.1590/0074-0276130457
  43. Lepage, T., Bryant, D., Philippe, H. & Lartillot, N. (2007) A general comparison of relaxed molecular clock models. Molecular biology and evolution, 24 (12), 2669–2680. https://doi.org/10.1093/molbev/msm193
  44. Lessard, B.D., Cameron, S.L., Bayless, K.M., Wiegmann, B.M. & Yeates, D.K. (2013) The evolution and biogeography of the austral horse fly tribe Scionini (Diptera: Tabanidae: Pangoniinae) inferred from multiple mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 68 (3), 516–540. https://doi.org/10.1016/j.ympev.2013.04.030
  45. Llanos, L., González, C.R. & Saldarriaga, M. (2015) Revision of the New World species of the genus Pelecorhynchus Macquart, 1850 (Diptera: Pelecorhynchidae). Zootaxa, 3955 (2), 188–210. https://doi.org/10.11646/zootaxa.3955.2.2
  46. Loew, H. (1863) Diptera Americae septentrionalis indigena. Centuria tertia. Berliner Entomologische Zeitschrift, 7, 1–55. https://doi.org/10.1002/mmnd.18630070104
  47. Mackerras, I.M. & Fuller, M.E. (1942) The genus Pelecorhynchus (Diptera: Tabanoidea). Proceedings of the Linnean Society of New South Wales, 67 (1–2), 9–77.
  48. Macquart, P.-J.-M. (1840) Diptères exotiques nouveaux ou peu connus. Tome deuxieme.--1er partie. Roret, Paris. 135 pp., 21 pls.
  49. Macquart, P.-J.-M. (1850) Diptères exotiques nouveaux ou peu connus. 4.e supplément. Mémoires de la Société des Sciences, de I’Agriculture et des Arts de Lille, 1849, 309–479, pls. 1–14.
  50. Márquez-Acero, A.S., Lambkin, C.L. & Lamas, C.J.E. (2021) Cladistic analysis of Ligyra sensu lato (Diptera: Bombyliidae), with description of a new genus. Zoological Journal of the Linnean Society, 191 (3), 928–940. https://doi.org/10.1093/zoolinnean/zlaa065
  51. Martinelli, A.G., Soto-Acuña, S., Goin, F.J., Kaluza, J., Bostelmann, J.E., Fonseca, P., Reguero, M.A., Leppe, M. & Vargas, A.O. (2021) New cladotherian mammal from southern Chile and the evolution of mesungulatid meridiolestidans at the dusk of the Mesozoic era. Scientific reports, 11 (1), 7594. https://doi.org/10.1038/s41598-021-87245-4
  52. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., & Lanfear, R. (2020) IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular biology and evolution, 37 (5), 1530–1534. https://doi.org/10.1093/molbev/msaa015
  53. Morita, S.I., Bayless, K.M., Yeates, D.K. & Wiegmann, B.M. (2016) Molecular phylogeny of the horse flies: a framework for renewing tabanid taxonomy. Systematic Entomology, 41, 56–72. https://doi.org/10.1111/syen.12145
  54. Mörs, T., Reguero, M. & Vasilyan, D. (2020) First fossil frog from Antarctica: implications for Eocene high latitude climate conditions and Gondwanan cosmopolitanism of Australobatrachia. Scientific reports, 10 (1), 5051. https://doi.org/10.1038/s41598-020-61973-5
  55. Myers, N., Mittermeier, R.A., Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.
  56. https://doi.org/10.1038/35002501
  57. Moulton, J.K. & Wiegmann, B.M. (2004) Evolution, and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta). Molecular Phylogenetics and Evolution, 31 (1), 363–378.
  58. https://doi.org/10.1016/S1055-7903(03)00284-7
  59. Nagatomi, A. (1982) The genera of Rhagionidae (Diptera). Journal of Natural History, 16, 31–70. https://doi.org/10.1080/00222938200770041
  60. Noh, J., Echeverría, C., Pauchard, A. & Cuenca, P. (2019) Extinction debt in a biodiversity hotspot: the case of the Chilean Winter Rainfall-Valdivian Forests. Landscape and Ecological Engineering, 15, 1–12. https://doi.org/10.1007/s11355-018-0352-3
  61. Oldroyd, H. (1957) The horse-flies (Diptera: Tabanidae) of the Ethiopian Region. III. Subfamilies Chrysopinae, Scepsidinae and Pangoniinae and a revised classification. British Museum (Natural History), London, xii + 489 pp.
  62. Oliveira, S.S. & Amorim, D.S. (2021) Phylogeny, phylogenetic classification, Mesozoic fossils, and biogeographical evolution of the Leiinae (Diptera: Mycetophilidae). Bulletin of the American Museum of Natural History, 446 (1), 1–110. https://doi.org/10.1206/0003-0090.446.1.1
  63. Olson, D.M. & Dinerstein, E. (1998) The Global 200: A Representation Approach to Conserving the Earth’s Most Biologically Valuable Ecoregions. Conservation Biology, 12 (3), 502–515. https://doi.org/10.1046/j.1523-1739.1998.012003502.x
  64. Osten Sacken, C.R. (1875) Prodrome of a monograph of the Tabanidae of the United States. Part I. The genera Pangonia, Chrysops, Silvius, Haematopota, Diabasis. Memoirs of the Boston Society of Natural History, 2 (1), 365–397. https://doi.org/10.5962/bhl.title.9392
  65. Pechuman, L.L. (1945) A new species of Glutops (Diptera, Coenomyiidae). The Canadian Entomologist, 77 (7), 134–135. https://doi.org/10.4039/Ent77134-7
  66. Pechuman, L.L. (1974) Two new Tabanidae from southeastern United States (Diptera). Journal of the New York Entomological Society, 82, 183–188.
  67. Pross, J., Contreras, L., Bijl, P.K., Greenwood, D.R., Bohaty, S.M., Schouten, S., Bendle, J.A., Röhl, U., Tauxe, L., Raine, J.I., Huck, C.E., van de Flierdt, T., Jamieson, S.S., Stickley, C.E., van de Schootbrugge, B., Escutia, C., Brinkhuis, H. & Integrated Ocean Drilling Program Expedition 318 Scientists (2012) Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 488 (7409), 73–77. https://doi.org/10.1038/nature11300
  68. Ricardo, G. (1910) A revision of the genus Pelecorhynchus of the family Tabanidae. The Annals and magazine of Natural History, (8) 5, 402–409. https://doi.org/10.1080/00222931008692794
  69. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
  70. Sanmartín, I. & Ronquist, F. (2004) Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology, 53 (2), 216–243. https://doi.org/10.1080/10635150490423430
  71. Say, T. (1823) Descriptions of dipterous insects of the United States. Journal of the Academy of Natural Sciences of Philadelphia, 3, 9–32.
  72. Sinclair, B.J. (1992) A phylogenetic interpretation of the Brachycera (Diptera) based on the larval mandible and associated mouthpart structures. Systematic Entomology, 17, 233–252. https://doi.org/10.1111/j.1365-3113.1992.tb00335.x
  73. Segovia, R.A., Pérez, M.F. & Hinojosa, L.F. (2012) Genetic evidence for glacial refugia of the temperate tree Eucryphia cordifolia (Cunoniaceae) in southern South America. American Journal of Botany, 99 (1), 121–129. https://doi.org/10.3732/ajb.1100013
  74. Segovia, R.A. Hinojosa, L.F., Pérez, M.F. & Hawkins, B.A. (2013) Biogeographic anomalies in the species richness of Chilean forests: Incorporating evolution into a climatic historic scenario. Austral Ecology, 38, 905–914. https://doi.org/10.1111/aec.12030
  75. Smith-Ramírez, C. (2004) The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforest. Biodiversity and Conservation, 13, 373–393. https://doi.org/10.1023/B:BIOC.0000006505.67560.9f
  76. Spence, A.R. & Tingley, M.W. (2020) The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography, 43, 1571–1590. https://doi.org/10.1111/ecog.05170
  77. Steyskal, G.C. (1953) A suggested classification of the Lower Brachycerous Diptera. Annals of the Entomological Society of America, 46 (2), 237–242. https://doi.org/10.1093/aesa/46.2.237
  78. Stuckenberg, B.R. (2001) Pruning the tree: a critical review of classifications of the Homeodactyla (Diptera, Brachycera), with new perspectives and an alternative classification. Studia dipterologica, 8, 3–41.
  79. Surcouf, J. (1921) Revision du genre Pelecorhynchus Macquart. (Diptères piqueurs de la famille des Tabanidae). Bulletin du Muséum national d’histoire naturelle, Paris, 1921, 221–224.
  80. Teskey, H.J. (1970) The immature stages and phyletic position of Glutops rossi (Diptera: Pelecorhynchidae). The Canadian Entomologist, 102 (9), 1130–1135. https://doi.org/10.4039/Ent1021130-9
  81. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22 (22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  82. Thorne, J.L. & Kishino, H. (2002) Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology, 51 (5), 689–702. https://doi.org/10.1080/10635150290102456
  83. Vebblen, T.T, Hill, R.S. & Read, J. (1996) Ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, 414 pp.
  84. Villagrán, C. & Varela J. (1990) Palynological evidence for increased aridity on the Central Chile coast during the Holocene. Quaternary Research, 34 (2), 198–207. https://doi.org/10.1016/0033-5894(90)90031-F
  85. Walker, F. (1848) List of the specimens of dipterous insects in the collection of the British Museum. Part 1. British Museum, London, 229 pp.
  86. Wiegmann, B.M., Tsaur, S.C., Webb, D.W., Yeates, D.K. & Cassel, B.K. (2000) Monophyly and relationships of the Tabanomorpha (Diptera: Brachycera) based on 28S ribosomal gene sequences. Annals of the Entomological Society of America, 93 (5), 1031–1038. https://doi.org/10.1603/0013-8746(2000)093[1031:MAROTT]2.0.CO;2
  87. Wiegmann, B.M., Yeates, D.K., Thorne J.L. & Kishino, H. (2003) Time Flies, a new molecular time-scale for brachyceran fly evolution without a clock. Systematic Biology, 52 (6), 745–756. https://doi.org/10.1093/sysbio/52.6.745
  88. Woodley, N.E. (1989) Phylogeny and classification of the “orthorrhaphous” Brachycera. In: McAlpine, J.F. & Wood, D.M. (Eds.), Manual of Nearctic Diptera Volume 3. Research Branch Centre, Ottawa, pp. 1371–1395.
  89. Ye, Z., Damgaard, J., Burckhardt, D., Gibbs, G., Yuan, J., Yang, H. & Bu, W. (2019) Phylogeny and historical biogeography of Gondwanan moss-bugs (Insecta: Hemiptera: Coleorrhyncha: Peloridiidae). Cladistics, 35 (2), 135–149. https://doi.org/10.1111/cla.12237
  90. Yeates, D.K. (2002) Relationships of the extant lower Brachycera (Diptera): a quantitative synthesis of morphological characters. Zoologica Scripta, 31 (1), 105–121. https://doi.org/10.1046/j.0300-3256.2001.00077.x
  91. Zloty, J., Sinclair, B.J. & Pritchard, G. (2005) Discovered in our backyard: A new genus and species of a new family from the Rocky Mountains of North America (Diptera, Tabanomorpha). Systematic Entomology, 30, 248–266. https://doi.org/10.1111/j.1365-3113.2005.00270.x