Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-10-19
Page range: 342-374
Abstract views: 435
PDF downloaded: 21

Trans-Japan Sea land-bridge disjunction: A case of vicariance in the subterranean genus Nipponasellus (Crustacea, Isopoda, Asellidae) in a large-scale biogeographical context

Department of Invertebrate Zoology; Federal Scientific Center of East Asia Terrestrial Biodiversity; Vladivostok 690022; RF
Crustacea Malacostraca Asellidae taxonomy phylogeny new species East Asia

Abstract

This study examines nineteen phreatobiological hand pump samples collected in 2009–2010 in three separate areas of salmon river basins in the southern part of Primorye, in the Far East of Russia. For the first time, faunal groundwater patterns were assessed for the rivers of Eastern Manchuria, the Ussury River Basin and the rivers of the south-western slope of Sikhote Alin. A total of 164 species (including 32 stygobionts) belonging to the phyla Annelida, Mollusca and Arthropoda are first records of groundwater animals, and two of the stygobionts are described below as new species for Science. Nipponasellus sudzukhensis spec. nov. and N. matsumotoi spec. nov. are described and illustrated, and their taxonomic affinities with congeners are discussed. The morphology of male pleopod 2 of the genus Nipponasellus is re-examined using scanning electron microscopy (SEM), which revealed fine details of the pleopodal structures. The two new ‘continental’ species of Nipponasellus were characterised by a distinct ‘cannula’ completely immersed in ctenoid cuticular scales and the absence of a ‘labial spur’. Informal macrogroups were proposed based on the structure of the ‘appendix masculina’ and an analysis of family distribution. The results of cladistic analyses revealed relationships between the proposed groups, but phylogenetic relationships within the Caecidotea-Proasellus group remain challenging. Common diagnostic characters of Nipponasellus showed that the group occupies an independent position close to the Caecidotea-Proasellus group rather than the ‘Asellus-pattern’ sensu Magniez. Revised diagnosis for the genus Nipponasellus is given, including the two new species and the five previously described ones. The species diversity of East Asian stygobiotic asellid isopods is briefly reviewed to infer a biogeographic distribution pattern that emphasises the strict endemicity of members of the genus Nipponasellus. The intracontinental separation between continental Far East Asia and the Japanese archipelago highlights the biogeographic importance of the land-bridge in the Oligocene and raises questions about hypotheses explaining the (disjunct) distribution in East Asia, together with the circumstances preceding an ancient colonisation of the region.

 

References

  1. Antonov, A.L. (2012) Vlijanie perestroek gidroseti na formirovanie arealov nekotoryh vidov ryb v bassejne Amura i na sopredel’nyh territorijah. Bulletin of the Russian Geographical Society, 144, 30–37. [in Russian]
  2. Bersenev, Yu. I. (1989) Karst of the Far East. Nauka, Moscow, 172 pp. [in Russian]
  3. Birstein, J.A. (1951) Presnovodnye osliki (Asellota). In: Stackelberg, A.A. (Ed.), Fauna SSSR. Crustacea. Vol. 7. No.5. AN SSSR Publ., Moscow, Leningrad, pp. 140. [in Russian]
  4. Birstein, J.A. (1985) n.k. In: Belyaev, G.M. (Ed.), Genesis of freshwater, cave and deep-water fauna. Nauka, Moscow, pp. 1–248. [in Russian]
  5. Birstein, J.A. & Levanidov, V.I. (1952) New species of subterranean Asellids from basin of Ussuri-river. Comptes rendus de l’Académie des sciences de l’URSS, 84, 1081–1084. [in Russian]
  6. Birstein, J.A. & Ljovuschkin, S.I. (1967) Biospeologica Sovietica 33. The order of Bathynellacea (Crustacea, Malacostraca) in the U.R.S.S. 1. The family Parabathynellidae. Bulletin de la Société Impériale des Naturalistes de Moscou, Biologia, 72, 55–66. [in Russian]
  7. Borutzky, E.W. (1966) Copepoda from caves of the Far East maritime littoral. Zoologicheskyi Zhurnal, 45, 770–772. [in Russian]
  8. Bou, C. & Rouch, R. (1967) Un nouveau champ de recherches sur la faune aquatique souterraine. Comptes rendus hebdomadaires des séances de l’Académie des sciences, Seria III, Sciences Naturelles, 265, 369–370.
  9. Bowman, Th.E. (1975) Three new troglobitic asellids from western North America (Crustacea: Isopoda: Asellidae). International Jouranal of Speleology, 7, 339–356. https://doi.org/10.5038/1827-806X.7.4.3
  10. Boyko, C.B., Bruce, N.L., Hadfield, K.A., Merrin, K.L., Ota, Y., Poore, G.C.B. & Taiti, S. (2008 onwards). Asellidae Rafinesque, 1815. In: World Marine, Freshwater and Terrestrial Isopod Crustaceans database. Accessed through: World Register of Marine Species. Available from: https://www.marinespecies.org/aphia.php?p=taxdetails&id=148665 (accesed 19 November 2022)
  11. Chemekov, Yu. F. (1964) Istorija razvitija rechnoj seti v bassejne Amura. Bulletin de l’Académie des Sciences de l’URSS. Ser. Geographique et geophisique, Moscou, 1, 81–92. [in Russian]
  12. Danielopol, D.L. & Swanson, K.M. (2019) Ostracod phylogeny and evolution – thirty years after “Manawan perspective”. Geo-Eco-Marina, 25, 219–251.
  13. Dole-Olivier, M.-J., Castellarini, F., Coineau, N., Galassi, D.M.P., Martin, P., Mori, N., Valdecasas, A. & Gibert, J. (2009) Towards an optimal sampling strategy to assess groundwater biodiversity: comparison across six European regions. Freshwater Biology, 54, 777–796. https://doi.org/10.1111/j.1365-2427.2008.02133.x
  14. Ebach, M.C. & Dowding, E.M. (2017) Theodor Arldt (1878–1960): Parochial Pauker and Pioneering Palaeobiogeographer. Zootaxa, 4319 (1), 157–168. https://doi.org/10.11646/zootaxa.4319.1.8
  15. Eme, D., Malard, F., Colson-Proch, C., Jean, P., Calvignac, S., Konecny-Dupre, L., Hervant, F. & Douady, Ch. J. (2014) Integrating phylogeography, physiology and habitat modelling to explore species range determinants. Journal of Biogeography, 41, 687–699. https://doi.org/10.1111/jbi.12237
  16. Fišer, C., Trontelj, P. & Sket, B. (2006) Phylogenetic analysis of the Niphargus orcinus species–aggregate (Crustacea: Amphipoda: Niphargidae) with description of new taxa. Journal of Natural History, 40, 2265–2315. https://doi.org/10.1080/00222930601086572
  17. Fukushima, M., Shimazaki, H., Rand, P.S. & Kaeriyama, M. (2011) Reconstructing Sakhalin taimen Parahucho perryi historical distribution and identifying causes for local extinctions. Transactions of the American Fisheries Society, 140, 1–13. https://doi.org/10.1080/00028487.2011.544999
  18. Ganelin, V.G. (2021) Chapter 9. Main features of sedimentogenesis and ecogenesis in Late Paleozoic Sea pools of Northeast Asia. In: René, M., Aiello, G. & El Bahariya, G. (Eds.), Geochemistry. IntechOpen, London, pp. 576–557. https://doi.org/10.5772/intechopen.91350
  19. Ganeshin, G.S. (1957) Geomorfologija Primor’ja. Trudy VSEGEI, Novaia Seria, 4, 1–135. [in Russian]
  20. Ganeshin, G.S. (1972) Obshhie zakonomernosti razvitija rechnoj seti Vostoka SSSR. In: Khomentovskij, A.S. & Tcetlin, S.M. (Eds.), Problemy izuchenija chetvertichnogo perioda. Nauka, Moscow, pp. 404–410. [in Russian]
  21. Geissbuehler, M. & Lasser, T. (2013) How to display data by color schemes compatible with red-green color perception deficiencies. Optics Express, 21, 9862–9874. https://doi.org/10.1364/OE.21.009862
  22. Gibert, J., Stanford, J.A., Dole-Olivier, M.-J. & Ward, J.V. (1994) Basic attributes of groundwater ecosystems and prospects for research. In: Gibert, J., Danielopol, D.L. & Stanford, J.A. (Eds.), Groundwater ecology. Academic Press, San Diego, pp. 7–40. https://doi.org/10.1016/B978-0-08-050762-0.50008-5
  23. Goloboff, P.A. & Catalano, S.A. (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32, 221–238. https://doi.org/10.1111/cla.12160
  24. Gorodkov, K.B. (1961) The simplest microprojector for drawing insects. Entomologicheskoe Obozrenie, 40, 936–939. [in Russian]
  25. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.
  26. Hay, W.W., DeConto, R., Wold, C.N., Wilson, K.M., Voigt, S., Schulz, M., Wold-Rossby, A., Dullo, W.-C., Ronov, A.B., Balukhovsky, A.N. & Soeding, E. (1999) Alternative global cretaceous paleogeography. In: Barrera, E. & Johnson, C. (Eds.), The evolution of Cretaceous Ocean/climate systems. Special paper 332. Geological Society of America, Boulder, Colorado, pp. 1–47. https://doi.org/10.1130/0-8137-2332-9.1
  27. Henry, J.-P. (1980) Un asellide interstitiel de France: Proasellus rouchi n. sp. (Isopoda, Asellota) et considérations sur les espèces de la lignée cavaticus. Crustaceana, 38, 183–193. https://doi.org/10.1163/156854080X00625
  28. Henry, J.-P., Lewis, J.J. & Magniez, G. (1986) Isopoda: Asellota: Aselloidea, Gnathostenetroidoidea, Stenetrioidea. In: Botosaneanu, L. (Ed.), Stygofauna Mundi. Brill, Leiden, pp. 434–464.
  29. Henry, J.-P. & Magniez, G. (1970) Contribution à la systématique des Asellides (Crustacea Isopoda). Annales de Spéléologie, 25, 335–367.
  30. Henry, J.-P. & Magniez, G. (1974) A new interstitial Asellid from southern Spain: Bragasellus boui n. sp. (Crustacea lsopoda Asellota) and some reflexions on european Asellidae genera. International Jouranal of Speleology, 6, 217–230. https://doi.org/10.5038/1827-806X.6.3.3
  31. Henry, J.-P. & Magniez, G. (1977) Observations sur Gallasellus heilyi Legrand, representant d’un nouveau genre d’Asellide souterrain de France. Bulletin De La Société Zoologique De France, 102, 215–222.
  32. Henry, J.-P. & Magniez, G. (1993) Présence d’Asellus stygobies (Crustacea, Isopoda, Aselloidea) dans la région du Primorye, Sibérie sud-orientale. Bijdragen tot de Dierkunde, 62, 179–191. https://doi.org/10.1163/26660644-06203003
  33. Henry, J.-P. & Magniez, G. (1995) Nouvelles données sur les Asellidae épigés d’Extrême-Orient (Crustacea, Isopoda, Asellota). Contributions to Zoology, 65, 101–122. https://doi.org/10.1163/26660644-06502003
  34. Ishida, T. & Ito, T. (1991) Freshwater harpacticoid copepods (Crustacea) from South Primorye, the Soviet Far East. Bulletin of the Biogeographical Society of Japan, 46, 77–82.
  35. Itoh, Y. (2018) Post-opening deformation history of the Japan Sea back-arc basin: Tectonic processes on an active margin governed by the mode of plate convergence. In: Sharkov, E. (Ed.), Tectonics—problems of regional settings. InTech Open, London, pp. 86–101. Available from: https://doi.org/10.5772/intechopen.71953 (accessed 19 September 2023)
  36. Juberthie, C., Sidorov, D., Decu, V., Mikhaljova, E. & Semenchenko, K. (2016) Subterranean fauna from Siberia and Russian Far East (Siberia-Far East special issue). Ecologica Montenegrina, 7, 507–529. https://doi.org/10.37828/em.2016.7.21
  37. Karanovic, I., Sidorov, D. & Marmonier, P. (2015) Zoogeography of the ostracod genus Nannocandona (Podocopa) with description of two new species from Europe and East Asia. Annales de Limnologie, 51, 297–313. https://doi.org/10.1051/limn/2015028
  38. Karanovic, T., Yoo, H. & Lee, W. (2012) A new cyclopoid copepod from Korean subterranean waters reveals an interesting connection with the Central Asian fauna (Crustacea: Copepoda: Cyclopoida). Journal of Species Research, 1, 156–174. https://doi.org/10.12651/JSR.2012.1.2.156
  39. Kawamura, T. (1940) Report of the limnobiological survey of Kwantung and Manchuokuo. Kyoto, 573 pp.
  40. Kershberg, L.B., Ryanzantaev, A.A., Gus’kov, L.G., Shmulev, V.G. & Naumov, Yu. A. (1986) Submerged shorelines on continental shelves of the Sea of Japan and Sea of Okhotsk, USSR. Journal of Coastal Research, 2, 61–68.
  41. Kniss, V.A. (2004) Zoogeographical analysis and specificity of subterranean fauna in the territory of the former USSR. Zoologicheskyi Zhurnal, 83, 615–620.
  42. Koenemann, S. & Holsinger, J.R. (1999) Phylogenetic analysis of the amphipod family Bogidiellidae s. lat., and revision of taxa above the species level. Crustaceana, 72, 781–816. https://doi.org/10.1163/156854099503960
  43. Koenemann, S., Vonk, R. & Schram, F.R. (1998) Cladistic analysis of 37 Mediterranean Bogidiellidae (Amphipoda), including Bogidiella arista, new species, from Turkey. Journal of Crustacean Biology, 18, 383–404. https://doi.org/10.2307/1549332
  44. Krupjanko, N.I. & Skirin, V.I. (2003) Efficiency of reproduction chum salmon Oncorhynchus keta (Walbaum) in southern Primorye. In: Makarchenko, E.A. (Ed.), Vladimir Ya. Levanidov’s Biennial Memorial Meeting, 2, pp. 511–522. [in Russian]
  45. Kryzhanovsky, O.L. (2002) Composition and distribution of insect faunas of the world. KMK, Moscow, 239 pp. [in Russian]
  46. Kuribayashi, K. & Kyono, M. (1995) Two new species of the genus Paramoera (Amphipoda, Gammaridea) from Hokkaido, northern Japan, with special reference to the strangely transformed second pleopod. Crustaceana, 68, 759–778. https://doi.org/10.1163/156854095X00278
  47. Lewis, J.J. (1982) A diagnosis of the hobbsi group, with descriptions of Caecidotea teresae, n. sp., and C. macropropoda Chase and Blair (Crustacea: Isopoda: Asellidae). Proceedings of the Biological Society of Washington, 95, 338–346.
  48. Lewis, J.J. (2013) Caecidotea insula, a new species of subterranean asellid from Lake Erie’s South Bass Island, Ohio (Crustacea: Isopoda: Asellidae). Journal of Cave and Karst Studies, 75, 64–67. https://doi.org/10.4311/2011LSC0218
  49. Lewis, J.J., Graening, G.O., Fenolio, D.B. & Bergey, E.A. (2006) Caecidotea mackini, new species, with a synopsis of the subterranean asellids of Oklahoma (Crustacea: Isopoda: Asellidae). Proceedings of the Biological Society of Washington, 119, 563–575. https://doi.org/10.2988/0006-324X(2006)119[563:CMNSWA]2.0.CO;2
  50. Lindberg, G.U. (1955) Chetvertichnyy period v svete biogeograficheskikh dannykh. Izdatelstvo AN SSSR, Moskva-Leningrad, 332 pp. [in Russian]
  51. Maddison, W.P. & Maddison, D.R. (2019) Mesquite: a modular system for evolutionary analysis. Version 3.61. Available from: http://www.mesquiteproject.org (accessed 19 September 2023)
  52. Maercks, H.H. (1930) Sexualbiologische Studien an Asellus aquaticus L. Zoologische Jahrbücher Abteilung für allgemeine Zoologie und Physiologie der Tiere, 48, 273–319.
  53. Magniez, G. (1993) Vie insulaire des Asellidae et Stenasellidae en Extrême-Orient. Memoires de Biospeologie, 20, 139–144.
  54. Magniez, G. (1996) Asellus aquaticus et ses proches parents: un etranger parmi la faune asellidienne d’Europe. Memoires de Biospeologie, 23, 181–187.
  55. Makhrov, A.A., Vinarski, M.V., Gofarov, M.Yu., Dvoryankin G.A., Novoselov, A. P. & Bolotov, I.N. (2020) Faunal exchanges between the Arctic Ocean and Caspian basins: history and current processes. Zoologicheskyi Zhurnal, 99, 1124–1139. [in Russian]
  56. Malard, F., Henry, J.-P. & Douady, Ch. J. (2014) The scientific contribution of Guy Magniez (1935–2014). Subterranean Biology, 13, 55–64. https://doi.org/10.3897/subtbiol.13.7412
  57. Matsumoto, K. (1962) Two new genera and a new subgenus of the family Asellidae of Japan. Annotationes Zoologicae Japonenses, 35, 162–169.
  58. Matsumoto, K. (1966) Studies on the subterranean Isopoda of Japan with notes on the well-water fauna of Japan. (Part 1) Studies on the subterranean Isopoda of Japan (No. 1). Report of Tokyo to Laboratories for Medical Sciences, 23, 77–103.
  59. Matsumoto, K. (1968) Studies on the subterranean Isopoda of Japan with notes on the well-water fauna of Japan. (Part 1) Studies on the subterranean Isopoda of Japan (No. 3). Report of Tokyo to Laboratories for Medical Sciences, 26, 101–116.
  60. Matsumoto, K. (1976) An introduction to the Japanese groundwater animals with reference to their ecology and hygienic significance. International Jouranal of Speleology, 8, 141–155. https://doi.org/10.5038/1827-806X.8.1.13
  61. Masticzkij, S. & Shitikov, V. (2015) Statistical analysis and visualisation of data using R. DKM Press, Moscow, 496 pp. [in Russian]
  62. Morvan, C., Malard, F., Paradis, E., Lefébure, T., Konecny-Dupré, L. & Douady, C.J. (2013) Timetree of Aselloidea reveals species diversification dynamics in groundwater. Systematic Biology, 62, 512–522. https://doi.org/10.1093/sysbio/syt015
  63. Nikolskaya, V.V. (1981) Fizicheskaya geografiya Dal’nego Vostoka Rossii. Vysshaja shkola, Moscow, 168 pp. [in Russian]
  64. Nixon, K.C. (2015) Winclada. Ver. 2.0. Published by the author, Ithaca. Available from: http://www.diversityoflife.org/winclada (accessed 23 May 2023)
  65. Ozawa, H. (2016) Early to Middle Miocene ostracods from the Yatsuo Group, Central Japan: Significance for the bathyal fauna between Japan Sea and northwest Pacific Ocean during the back-arc spreading. Paleontological Research, 20, 121–144. https://doi.org/10.2517/2015PR028
  66. Pesenko, Yu. A. (1982) Principy i metody kolichestvennogo analiza v faunisticheskih issledovanijah. Nauka, Moscow, 287 pp. [in Russian]
  67. Pešić, V., Semenchenko, K.A. & Lee, W. (2013) Torrenticolid water mites from Korea and the Russian Far East. ZooKeys, 299, 21–48. https://doi.org/10.3897/zookeys.299.5272
  68. Por, F.D. (1989) The legacy of Tethys. An aquatic biogeography of the Levant. In: Dumont, H.J. (Ed.), Monographiae Biologicae. Vol. 63. Kluwer Academic Publishers, Springer, Dordrecht, pp. 1–216. https://doi.org/10.1007/978-94-009-0937-3
  69. Prozorova, L.A. (1991) Composition, distribution and biology features of freshwater gastropods of the Primorje Territory. Zoologicheskyi Zhurnal, 70, 54–63. [in Russian]
  70. Rabosky, D.L. (2022) Evolutionary time and species diversity in aquatic ecosystems worldwide. Biological Reviews, 97, 2090–2105. https://doi.org/10.1111/brv.12884
  71. Rogers, Ch. & Thorp, J.H. (2019) Thorp and Covich’s freshwater invertebrates. Vol. 4. In: Rogers, Ch. & Thorp, J.H. (Eds.), Keys to palaearctic fauna. Academic Press, London, pp. 1–946. https://doi.org/10.1016/C2010-0-65588-X
  72. Rusinek, O.T., Takhteev, V.V. & Khodzher, T.V. (2012) Chapter 7. Proishozhdenie i jevoljucija fauny i flory Bajkala. In: Rusinek, O.T. Takhteev, V.V., Gladkochub, D.P., Khodzher, T.V. & Budnev, N.M. (Eds.), Baicalogy. Vol. 2. Nauka, Novosibirsk, pp. 1–1114. [in Russian]
  73. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH Image to Imagej: 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089
  74. Schornikov, E.I. & Trebukhova, Yu. A. (2001) Ostracods of brackish and fresh waters of southwestern coast of Peter the Great Bay. In: Kasyanov, V.L., Vaschenko, M.A. & Pitruk, D.L. (Eds.), The state of the environment and biota of the southwestern part of Peter the Great Bay and the Tumen River mouth. Dalnauka, Vladivostok, pp. 56–84.
  75. Scotese, C.R. (2013) Map Folio 51a, Late Permian (260 Ma, Capitanian). Atlas of Middle and Late Permian and Triassic paleogeographic maps. Maps 43–52. Vol. 3 & 4. Paleomap PaleoAtlas for ArcGIS. Paleomap project, Evanston. [map] https://doi.org/10.13140/2.1.3136.3849
  76. Semenchenko, K.A. (2010) Two new water mites species (Acariformes: Hydrachnidia) from interstitial waters of the Russian Far East. Zootaxa, 2429, 52–69. https://doi.org/10.11646/zootaxa.2429.1.4
  77. Semenchenko, K.A. (2016) New water mites species (Acariformes: Hydrachnidia) from interstitial waters of the Russian Far East. Zootaxa, 4097 (4), 545–556. https://doi.org/10.11646/zootaxa.4097.4.6
  78. Semernoy, V.P. & Sidorov, D.A. (2013) New data on the fauna of Oligochaeta from the hyporheon of streams in southern Primorskii Krai. Amurian zoological journal, 5, 244–247. https://doi.org/10.33910/1999-4079-2013-5-3-244-247
  79. Sitnikova, T.Ya. & Prozorova, L.A. (2008) Once more about baikalian endemic gastropods of family Baicaliidae (Gastropoda). In: Reports of the scientific-practical conference, Listvyanka, 18–20 March 2008. Publishing house of RAS, Novosibirsk, pp. 371–375. [in Russian]
  80. Shatalkin, A.I. (1988) Biological systematics. Moscow University Publ., Moscow, 184 pp. [in Russian]
  81. Shubin, N., Tabin, C. & Caroll, S. (2009) Deep homology and the origins of evolutionary novelty. Nature, 457, 818–823. https://doi.org/10.1038/nature07891
  82. Sidorov, D.A. & Semenchenko, K.A. (2009) Fauna podzemnyh vod «Japonomorskogo kol’ca»: aspekty issledovanija. Materialy Vserossijskoj nauchno-prakticheskoj konferencii s mezhdunarodnym uchastiem ‘Ekologija, jevoljucija i sistematika zhivotnyh’. NP Golos gubernii, Rjazan’, pp. 131–133. [in Russian]
  83. Sket, B. (1999) High biodiversity in hypogean waters and its endangerment: The situation in Slovenia, the Dinaric Karst, and Europe. Crustaceana, 72, 767–779. https://doi.org/10.1163/156854099503951
  84. Sket, B. (2018) Collecting and processing crustaceans of subterranean habitats. Journal of Crustacean Biology, 38, 380–384. https://doi.org/10.1093/jcbiol/rux125
  85. Sket, B. & Karaman, G. (2018) Phylogenetic position of the genus Chaetoniphargus Karaman et Sket (Crustacea: Amphipoda: Niphargidae) from Dinaric Karst. An extreme case of homoplasy. Folia Biologica et Geologica, Ljubljana, 59, 93–99. https://doi.org/10.3986/fbg0046
  86. Sorokin, A.P., Makhinov, A.N., Voronov, B.A., Sorokina, A.T. & Artyomenko, T.V. (2010) Evolution of the Amur Basin in Mesozoic and Cenozoic age and its reflection in the relief modern dynamics. Vestnik DVO RAN, 3, 72–80. [in Russian]
  87. Starobogatov, Ya. I. (1970) The mollusk fauna and a zoogeographical division of the inland waterbodies of the globe. Nauka Publ., Leningrad, 372 pp. [in Russian]
  88. Starozhilov, V.T. (2010) Landscape zonation of Primorsky Krai. Vestnik DVO RAN, 3, 107–112. [in Russian]
  89. State Water Register (1977) Surface-water resources of the USSR. Main hydrological characteristics. Vol. 18. Far East. Issue 3. Primorye. Hydrometeoizdat, Leningrad, 247 pp. [in Russian]
  90. Staude, C.P. (1995) The amphipod genus Paramoera Miers (Gammaridea: Eusiroidea: Pontogeneiidae) in the Eastern North Pacific. Amphipacifica, 1, 61−102.
  91. Steeves III, H.R. (1963) The troglobitic asellids of the United States: The stygius group. The American Midland Naturalist, 69, 470−481. https://doi.org/10.2307/2422923
  92. Steeves III, H.R. (1966) Evolutionary aspects of the troglobitic asellids of the United States: the hobbsi, stygius and cannulus groups. The American Midland Naturalist, 75, 392−403. https://doi.org/10.2307/2423400
  93. Stoch, F. (1985) On the presence of Proasellus slavus Remy, 1948 (Crustacea, Isopoda) in Italy (Contribution to the knowledge of the Isopods: V). Gortania Atti del Museo Friulano di Storia Naturale, 6, 213–219.
  94. Stoch, F. (1989) The Proasellus pavani-group (Crustacea, Isopoda) in Italy: Systematic and phylogenetic considerations. Gortania Atti del Museo Friulano di Storia Naturale, 10, 163–192.
  95. Stock, J.H. & Jo, Y.W. (1990) Two Crangonyctidae (Crustacea, Amphipoda) from subterranean waters of the Far East. Stygologia, 5, 119–127.
  96. Swofford, D.L. (1998) PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). Sinauer Associates, Sunderland, Massachusetts. [program]
  97. Teslenko, V.A. (2007) A survey of stonefly (Plecopetra) fauna in respect of stream zonation in the Far East of Russia. Euroasian Entomological Journal, 6, 157–180.
  98. The IUCN Red List of Threatened Species (2022) Available from: https://www.iucnredlist.org/ (accessed 7 April 2023)
  99. Tomikawa, K. (2016) Chapter 9. Species diversity and phylogeny of freshwater and terrestrial gammaridean amphipods (Crustacea) in Japan. In: Motokawa, M. & Kajihara, H. (Eds.), Species diversity of animals in Japan, diversity and commonality in animals. Springer, Tokyo, pp. 249–266. https://doi.org/10.1007/978-4-431-56432-4_9
  100. Torsvik, T. & Cocks, L. (2016). Chapter 10. Permian. In: Earth history and palaeogeography. Cambridge University Press, Cambridge, pp. 178–194. https://doi.org/10.1017/9781316225523.011
  101. Tsoy, I.B., Vashchenkova, N.G., Gorovaya, M.T. & Terekhov, E.P. (1985) The find of continental deposits on Yamato Rise (Sea of Japan). Russian Journal of Pacific Geology, 3, 50–55. [in Russian]
  102. Tuzovskij, P.V. (2010) Description of a new water mite species of the genus Stygothrombium Viets, 1932 (Acariformes: Stygothrombioidea: Stygothrombiidae) from the Far East of Russia. Zoosystematica Rossica, 19, 188–195. https://doi.org/10.31610/zsr/2010.19.2.188
  103. Urusov, V.M. & Miloradov, D.E. (2020) K tektonike Makromanchzhurii. Omega Science, Ufa, 1, 19–38.
  104. Varnavskiy, V.G., Kirillova, G.L., Krapiventseva, V.V. & Kuznetsov, V.Y. (1993) Characteristics of lithologicstructural association of complexes of sedimentary basins: Petroleum Geology, 27, 9–35.
  105. Vekhoff, N.V. (1994) Waterlice from the extra-tundra areas of Siberia and the Far East of Russia, with notes on systematics and zoogeography (Crustacea, Isopoda, Asellidae). Arthropoda Selecta, 3, 21–31.
  106. Wägele, J.W. (1989) On the influence of fishes on the evolution of benthic crustaceans. Zeitschrift für zoologische Systematik und Evolutionsforschung, 27, 297–309. https://doi.org/10.1111/j.1439-0469.1989.tb00352.x
  107. Watling, L. (1989) A classification system for crustacean setae based on the homology concept. In: Felgenhauer, B.E., Thistle, A.B. & Watling, L. (Eds.), Functional morphology of feeding and grooming in Crustacea. CRC Press, London, pp. 15–26. https://doi.org/10.1201/9781003079354
  108. Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F. & Tian, D. (2019) The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556–5564. https://doi.org/10.1029/2019GC008515
  109. Wilson, G.D.F. (2008) Global diversity of Isopod crustaceans (Crustacea; Isopoda) in freshwater. Hydrobiologia, 595, 231–240. https://doi.org/10.1007/s10750-007-9019-z