Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-10-18
Page range: 186-204
Abstract views: 226
PDF downloaded: 15

Mitochondrial genomes of three Mylabris (Pseudabris) species (Coleoptera: Meloidae, Mylabrini) and their phylogenetic implications

Key Laboratory of Zoological Systematics and Application; School of Life Sciences; Institute of Life Science and Green Development; Hebei University; Wusidong Road 180; 071002; Baoding; Hebei Province; China
Key Laboratory of Zoological Systematics and Application; School of Life Sciences; Institute of Life Science and Green Development; Hebei University; Wusidong Road 180; 071002; Baoding; Hebei Province; China
Key Laboratory of Zoological Systematics and Application; School of Life Sciences; Institute of Life Science and Green Development; Hebei University; Wusidong Road 180; 071002; Baoding; Hebei Province; China
Coleoptera Pseudabris mitochondrial genome phylogenetics Qinghai-Xizang Plateau

Abstract

The complete mitogenomes of the subgenus Mylabris (Pseudabris) Fairmaire, 1894, endemic to the Qinghai-Xizang Plateau, are reported for the first time. Three species out of seven, M. hingstoni Blair, 1927, M. longiventris Blair, 1927, and M. przewalskyi (Dokhtouroff, 1887), were sequenced. The sequencing results of mitogenomes were annotated and analyzed. The gene arrangements were consistent with the putative ancestral insect mitogenomes as understood today, including 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and a noncoding internal control region (CR). The PCGs used the typical start ATN codon and TAA/TAG stop codons. The lengths of three mitogenomes were 15,692 bp, 15,685 bp, and 15,685 bp, with an A + T content of 71.29%, 71.67%, and 71.53%, respectively. The evolution rates of 13 PCGs were compared: The evolution rate of ATP8 was the highest, and that of COX1 was the lowest. Furthermore, the phylogenetic relationships among the genera and tribes of Meloidae were discussed.

 

References

  1. Batelka, J. & Hájek, J. (2015) New synonyms, combinations and faunistic records in the genus Denierella Kaszab (Coleoptera: Meloidae). Zootaxa, 4000 (1), 123–130. https://doi.org/10.11646/zootaxa.4000.1.6
  2. Batelka, J., Kundrata, R. & Bocak, L. (2016) Position and relationships of Ripiphoridae (Coleoptera: Tenebrionoidea) inferred from ribosomal and mitochondrial molecular markers. Annales Zoologici, 66 (1), 113–123. https://doi.org/10.3161/00034541ANZ2016.66.1.008
  3. Bologna, M.A. & Pinto, J.D. (2001) Phylogenetic studies of Meloidae (Coleoptera), with emphasis on the evolution of phoresy. Systematic Entomology, 26, 33–72.
  4. Bologna, M.A. & Pinto, J.D. (2002) The Old World genera of Meloidae (Coleoptera): A key and synopsis. Journal of Natural History, 36, 2013–2102. https://doi.org/10.1080/00222930110062318
  5. Bologna, M.A., Turco, F. & Pinto, D. (2013) The Meloidae (Coleoptera) of Australasia: a generic review, descriptions of new taxa, and a challenge to the current definition of subfamilies posed by exceptional variation in male genitalia. Invertebrate Systematics, 27, 391–427. https://doi.org/10.1071/IS12054
  6. Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Research, 27, 1767–1780. https://doi.org/10.1093/nar/27.8.1767
  7. Cai, C., Tihelka, E., Giacomelli, M., Lawrence, J.F., Ślipiński, A., Kundrata, R., Yamamoto, S., Thayer, M.K., Newton, A.F., Leschen, R.A.B., Gimmel, M.L., Lü, L., Engel, M.S., Bouchard, P., Huang, D., Pisani, D. & Donoghue, P.C.J. (2022) Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science, 9 (3), 211771. https://doi.org/10.1098/rsos.211771
  8. Cameron, S.L. (2014) Insect mitochondrial genomics: Implications for evolution and phylogeny. Annual Review of Entomology, 59, 95–117. https://doi.org/10.1146/annurev-ento-011613-162007
  9. Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  10. Chen, S., Liu, C.H., Hao, Y.M., Liu, Y.Y., Liu, X. & Du, C. (2022) The complete mitochondrial genome of Meloe proscarabaeus (Coleoptera, Meloidae): genome descriptions and phylogenetic inferences. ZooKeys, 1109, 103–114. https://doi.org/10.3897/zookeys.1109.81544
  11. Crowson, R.A. (1955) The natural classification of the families of Coleoptera. Nathaniel Lloyd & Co., London, 187 pp.
  12. Dierckxsens, N., Mardulyn, P. & Smits, G. (2016) NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45, e18. https://doi.org/10.1093/nar/gkw955
  13. Donath, A., Jühling, F., Al-Arab, M., Bernhart, S.H., Reinhardt, F., Stadler, P.F., Middendorf, M. & Bernt, M. (2019) Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research, 47, 10543–10552. https://doi.org/10.1093/nar/gkz833
  14. Du, C., He, S., Song, X.H., Liao, Q., Zhang, X.Y. & Yue, B.S. (2016) The complete mitochondrial genome of Epicauta chinensis (Coleoptera: Meloidae) and phylogenetic analysis among coleopteran insects. Gene, 578, 274–280. https://doi.org/10.1016/j.gene.2015.12.036
  15. Du, C., Zhang, L., Lu, T., Ma, J., Zeng, C., Yue, B. & Zhang, X. (2017) Mitochondrial genomes of blister beetles (Coleoptera, Meloidae) and two large intergenic spacers in Hycleus genera. BMC Genomics, 18, 698. https://doi.org/10.1186/s12864-017-4102-y
  16. Grant, J.R. & Stothard, P. (2008) The CG View Server: A comparative genomics tool for circular genomes. Nucleic Acids Research, 36, 181–184. https://doi.org/10.1093/nar/gkn179
  17. Han, X.H., Li, Y.C., Lu, C.D., Liang, G.H. & Zhang, F.P. (2020) The complete mitochondrial genome of Epicauta ruficeps (Coleoptera: Meloidae). Mitochondrial DNA Part B, 5 (3), 2049–2050. https://doi.org/10.1080/23802359.2020.1763213
  18. Hurst, L.D. (2002) The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends in Genetics, 18, 486–487. https://doi.org/10.1016/s0168-9525(02)02722-1
  19. Jiang, M., Wei, Q. & Wang, W.Q. (2020) Phylogenetic relationship and characterization of the complete mitochondrial genome of Mylabris calida (Coleoptera:Meloidae). Mitochondrial DNA Part B, 5, 3445–3446. https://doi.org/10.1080/23802359.2020.1823276
  20. Jie, H., Lei, M.Y., Li, P.M., Feng, X. L., Zeng, D.J., Zhao, G.J., Zhu, J.B., Zhang, C.L., Yu, M., Huang, Y. & Chen, Q. (2016) The complete nucleotide sequence of the mitochondrial genome of Epicauta aptera Kaszab. Mitochondrial DNA Part B, 1(1), 489–490. https://doi.org/10.1080/23802359.2016.1192500
  21. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  22. Kergoat, G.J., Soldati, L., Clamens, A.-A., Jourdan, H., Jabbour-Zahab, R., Genson, G., Bouchard, P. & Condamine, F.L. (2014) Higher level molecular phylogeny of darkling beetles (Coleoptera: Tenebrionidae). Systematic Entomology, 39, 486–499. https://doi.org/10.1111/syen.12065
  23. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260
  24. Letunic, I. & Bork, P. (2016) Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44, W242–W245. https://doi.org/10.1093/nar/gkw290
  25. Li, X.M., Li, J. & Pan, Z. (2020) New species and new faunistic records of the family Meloidae Gyllenhal, 1810 (Coleoptera: Tenebrionoidea) from China, with a list of meloid specie from Xinjiang. Journal of Asia-Pacific Entomology, 23, 1144–1150. https://doi.org/10.1016/j.aspen.2020.09.006
  26. Liu, Y.Y., Zhou, Z.C. & Chen, X.S. (2020) Characterization of the complete mitochondrial genome of Epicauta impressicornis (Coleoptera: Meloidae) and its phylogenetic implications for the infraorder Cucujiformia. Journal of Insect Science, 20, 16. https://doi.org/10.1093/jisesa/ieaa021
  27. López-Estrada, E.K., Sanmartín, L., Uribe, J.E., Abalde, S., Jiménez-Ruiz, Y. & García-París, M. (2022) Mitogenomics and hidden-trait models reveal the role of phoresy and host shifts in the diversification of parasitoid blister beetles (Coleoptera: Meloidae). Molecular Ecology, 31, 2453–2474. https://doi.org/10.1111/mec.16390
  28. Lowe, T.M. & Chan, P.P. (2016) tRNAscan-SE on-line: search and contextual analysis of transfer RNA genes. Nucleic Acids Research, 44, W54–W57. https://doi.org/10.1093/nar/gkw413
  29. McKenna, D.D., Shin, S., Ahrens, D., Balke, M., Beza-Beza, C., Clarke, D.J., Donath, A., Escalona, H.E., Friedrich, F., Letsch, H., Liu, S., Maddison, D., Mayer, C., Misof, B., Murin, P.J., Niehuis, O., Peters, R.S., Podsiadlowski, L., Pohl, H., Scully, E.D., Yan, E.V., Zhou, X., Ślipiński, A. & Beutel, R.G. (2019) The evolution and genomic basis of beetle diversity. The Proceedings of the National Academy of Sciences, 116 (49), 24729–24737. https://doi.org/10.1073/pnas.1909655116
  30. Meng, G., Li, Y., Yang, C. & Liu, S. (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47, e63. https://doi.org/10.1093/nar/gkz173
  31. Mora, P., Montiel, E., Palomeque, T. & Lorite, P. (2022) Complete mitochondrial genome of the blister beetle Hycleus scutellatus Rosenhauer, 1856 (Coleoptera, Meloidae). Mitochondrial DNA Part B, 7, 986–988. https://doi.org/10.1080/23802359.2022.2080603
  32. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
  33. Pan, Z. & Ren, G.D. (2020) New synonyms, combinations and status in the Chinese species of the family Meloidae Gyllenhal, 1810 (Coleoptera: Tenebrionoidea) with additional faunistic records. Zootaxa, 4820 (2), 260–286. https://doi.org/10.11646/zootaxa.4820.2.3
  34. Pan, Z., Ren, G.D., Wang, X.P. & Bologna, M.A. (2013) Revision of the genus Pseudabris Fairmaire (Coleoptera, Meloidae), an endemic to the Tibetan Plateau, with biogeographical comments. Systematic Entomology, 38, 134–150. https://doi.org/10.1111/j.1365-3113.2012.00651.x
  35. Perna, N.T. & Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41, 353–358. https://doi.org/10.1007/BF00186547
  36. Pinto, J.D. & Bologna, M.A. (1999) The New World genera of Meloidae (Coleoptera): A key and synopsis. Journal of Natural History, 33, 569–620. https://doi.org/10.1080/002229399300254
  37. Ranwez, V., Douzery, E.J.P., Cambon, C., Chantret, N. & Delsuc, F. (2018) MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Molecular Biology and Evolution, 35, 2582–2584. https://doi.org/10.1093/molbev/msy159
  38. Riccieri, A., Mancini, E., Pitzalis, M., Salvi, D. & Bologna, M.A. (2022) Multigene phylogeny of blister beetles (Coleoptera, Meloidae) reveals extensive polyphyly of the tribe Lyttini and allows redefining its boundaries. Systematic Entomology, 47, 569–580. https://doi.org/10.1111/syen.12547
  39. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  40. Salvi, D., Maura, M., Pan, Z. & Bologna, M.A. (2019) Phylogenetic systematics of Mylabris blister beetles (Coleoptera, Meloidae): a molecular assessment using species trees and total evidence. Cladistics, 35, 243–268. https://doi.org/10.1111/cla.12354
  41. Stothard, P. (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques, 28, 1102–1104. https://doi.org/10.2144/00286ir01
  42. Timmermans, M.J.T.N., Barton, C., Haran, J., Ahrens, D., Culverwell, C.L., Ollikainen, A., Dodsworth, S., Foster, P.G., Bocak, L. & Vogler, A.P. (2016) Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biology & Evolution, 8 (1), 161–175. https://doi.org/10.1093/gbe/evv241
  43. Wu, Y.M., Liu, Y.Y. & Chen, X.S. (2018) The complete mitochondrial genomes of Hycleus cichorii and Hycleus phaleratus (Coleoptera: Meloidae). Mitochondrial DNA Part B, 3, 159–160. https://doi.org/10.1080/23802359.2018.1431066
  44. Yuan, M.L., Zhang, Q.L., Zhang, L., Guo, Z.L., Liu, Y.J., Shen, Y.Y. & Shao, R.F. (2016) High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences. Molecular Phylogenetics and Evolution, 104, 99–111. https://doi.org/10.1016/j.ympev.2016.08.002
  45. Zhang, D., Gao, F., Jakovlić, I., Zhou, H., Zhang, J., Li, W.X. & Wang, G.T. (2019) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348–355.
  46. https://doi.org/10.1111/1755-0998.13096
  47. Zhou, Z.C., Liu, Y.Y. & Chen, X.S. (2021) Structural features and phylogenetic implications of three new mitochondrial genomes of blister beetles (Coleoptera: Meloidae). Journal of Insect Science, 21 (6), 19. https://doi.org/10.1093/jisesa/ieab100