Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-09-18
Page range: 151-162
Abstract views: 195
PDF downloaded: 14

Connecting the dots: DNA barcoding and lectotype designation shedding light on Labrundinia longipalpis (Goetghebuer, 1921), an intriguing non-biting midge (Chironomidae, Tanypodinae)

Laboratory of Aquatic Insect Biodiversity and Ecology; Department of Zoology; Institute of Biosciences; University of São Paulo; São Paulo; Brazil
Diptera lectotype dNa barcoding aquatic insects taxonomy biogeography

Abstract

Accurate taxonomic classification is deemed paramount for gaining an understanding of the diversity and distribution of insect species. In this study, an essential stride was made towards advancing the taxonomy of the non-biting midge Labrundinia longipalpis (Chironomidae, Tanypodinae), which serves as the type species of the genus. The distribution of L. longipalpis is particularly intriguing as it contrasts with the predominantly tropical distribution of the genus, with this species being found across the Holarctic region. The main goal of this investigation was to designate a lectotype and several paralectotypes, which was achieved through a comprehensive reexamination of the original material, alongside additional specimens obtained from the type-locality in Flanders. Furthermore, the distribution of L. longipalpis across Europe and North America was examined, and the proposed synonymization of L. maculata with the latter was challenged using the analysis of molecular data. Through the comparison of DNA barcodes, it was revealed that the North American population of L. longipalpis clustered together with the European population, which alludes to a considerable level of genetic similarity between these two populations. These results provide valuable insights into the behavior, ecological dynamics and biogeography of L. longipalpis, while also raising interesting questions about colonization and distribution patterns attributed to its adaptability and potential for long-distance dispersal.

 

References

  1. Aburaya, F.H. & Callil, C.T. (2007) Variação temporal de Chironomidae (Diptera) no Alto Rio Paraguai (Cáceres, Mato Grosso, Brasil). Revista Brasileira de Zoologia, 24 (3 ), 565–572. https://doi.org/10.1590/S0101-81752007000300007
  2. Ashe, P. & O’Connor, J.P. (2009) A World Catalogue of Chironomidae (Diptera). Part 1. Buchonomyiinae, Chilenomyiinae, Podonominae, Aphroteniinae, Tanypodinae, Usambaromyiinae, Diamesinae, Prodiamesinae and Telmatogetoninae. Irish Biogeographical Society & National Museum of Ireland, Dublin, 445 pp.
  3. Brundin, L. (1949) Chironomiden und andere Bodentiere der südschwedischen Urgebirgsseen. Reports of the Institute of Freshwater Research of Drottningholm, 30, 1–914.
  4. Caldwell, B.A. (1997) The American Chaetocladius stamfordi (Johannsen), a synonym of C. piger (Goetghebuer) from the Palaearctic (Diptera: Chironomidae). Aquatic Insects: International Journal of Freshwater Entomology, 19 (2), 117–122. https://doi.org/10.1080/01650429709361644
  5. Carew, M.E. & Hoffmann, A.A. (2015) Delineating closely related species with DNA barcodes for routine biological monitoring. Freshwater Biology, 60, 1545–1560. https://doi.org/10.1111/fwb.12587
  6. Chimeno, C., Hausmann, A., Schmidt, S., Raupach, M.J., Doczkal, D., Baranov, V., Hübner, J., Höcherl, A., Albrecht, R., Jaschhof, M., Haszprunar, G. & Hebert, P.D.N. (2022) Peering into the Darkness: DNA Barcoding Reveals Surprisingly High Diversity of Unknown Species of Diptera (Insecta) in Germany. Insects, 13, 82. https://doi.org/10.3390/insects13010082
  7. Cotoras, D.D. & Zumbad, M.A. (2020) Aerial plankton from the Eastern Tropical Pacific. Revista de Biología Tropical, 68, 155–162. https://doi.org/10.15517/rbt.v68iS1.41177
  8. Edwards, F.W. (1929) British non-biting midges (Diptera, Chironomidae). Transactions of the Royal Entomological Society of London, 77, 279–430. https://doi.org/10.1111/j.1365-2311.1929.tb00692.x
  9. Ekrem, T., Stur, E., Orton, M.G. & Adamowicz, S.J. (2018) DNA barcode data reveal biogeographic trends in Arctic non-biting midges. Trends in DNA Barcoding and Metabarcoding, 1 (1), 787–796. https://doi.org/10.1139/gen-2018-0100
  10. Farooq, Q., Shakir, M., Ejaz, F., Zafar, T., Durrani, K. & Ullah, A. (2020) Role of DNA Barcoding in Plant Biodiversity Conservation. Scholars International Journal of Biochemistry, 3 (3), 48–52. https://doi.org/10.36348/sijb.2020.v03i03.002
  11. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791. https://doi.org/10.2307/2408678
  12. Fittkau, E.J. (1962) Die Tanypodinae (Diptera: Chironomidae): Die Tribus Anatopyniini, Macropelopiini und Pentaneurini. Abhandlungen zur Larvalsystematik der Insekten, 6, 1–453.
  13. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.
  14. Gadawski, P., Montagna, M., Rossaro, B., Giłka, W., Pešić, V., Grabowski, M. & Magoga, G. (2022) DNA barcoding of Chironomidae from the Lake Skadar region: Reference library and a comparative analysis of the European fauna. Diversity and Distributions, 28, 2838– 2857. https://doi.org/10.1111/ddi.13504
  15. GBIF: The Global Biodiversity Information Facility (2021) GBIF Home Page. Available from: https://www.gbif.org (accessed 23 August 2023)
  16. Goetghebuer, M. (1921) Chironomides de Belgique et spécialement de la zone des Flanders. Mémoires du Musée Royal d’Histoire Naturelle de Belgique, 8, 1–211. https://doi.org/10.5962/bhl.title.52331
  17. Goetghebuer, M. (1936) Tendipedidae (Chironomidae). a) Subfamilie Pelopiinae (Tanypodinae). A. Die Imagines. In: Lindner, E. (Ed.), Die Fliegen der palaearktischen Region. 13b. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 1–50, Taf. I–VI.
  18. Gressitt, J.L., Leech, R.E. & O’Brien, C.W. (1960) Trapping of air-borne insects in the Antarctic area. Pacific Insects, 2, 245–250.
  19. Hamerlík, L. (2002) First record of Labrundinia longipalpis and Polypedilum nubifer (Diptera, Chironomidae) from Slovakia. Biologia, Bratislava, 57, 602.
  20. Hamerlík, L. (2007) Classification of water bodies of the lower Hron River based on chironomid assemblages (Diptera: Chironomidae). Acta Universitatis Carolinae Environmentalica, 21, 73–81.
  21. Hardy, A.C. & Milne, P.S. (1938) Studies in the Distribution of Insects by Aerial Currents. Journal of Animal Ecology, 7 (2), 199–229. https://doi.org/10.2307/1156
  22. Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
  23. Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S. & Francis, C.M. (2004) Identification of birds through DNA barcodes. PLoS Biology, 2, e312. https://doi.org/10.1371/journal.pbio.0020312
  24. Hubenov, Z. (2021) Species composition and distribution of the dipterans (Insecta: Diptera) in Bulgaria. Advanced Books, 276 pp. https://doi.org/10.3897/ab.e68616
  25. Ivković, M., Dorić, V., Baranov, V., Mihaljević, Z., Kolcsár, L.-P., Kvifte, G.M., Nerudova, J. & Pont, A.C. (2020) Checklist of aquatic Diptera (Insecta) of Plitvice Lakes National Park, Croatia, a UNESCO world heritage site. ZooKeys, 918, 99–142. https://doi.org/10.3897/zookeys.918.49648
  26. Jacobsen, R.E. (2008) A Key to the Pupal Exuviae of the Midges (Diptera: Chironomidae) of Everglades National Park, Florida. U.S. Geological Survey Scientific Investigations Report, 2008-5082, 1–119. https://doi.org/10.3133/sir20085082
  27. de Jong, Y., Verbeek, M., Michelsen, V., de Place Bjørn, P., Los, W., Steeman, F., Bailly, N., Basire, C., Chylarecki, P., Stloukal, E., Hagedorn, G., Wetzel, F., Glöckler, F., Kroupa, A., Korb, G., Hoffmann, A., Häuser, C., Kohlbecker, A., Müller, A., Güntsch, A., Stoev, P. & Penev, L. (2014) Fauna Europaea—all European animal species on the web. Biodiversity Data Journal, 2, e4034. https://doi.org/10.3897/BDJ.2.e4034
  28. Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
  29. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
  30. Krosch, M.N., Baker, A.M., Mather, P.B. & Cranston, P.S. (2011) Systematics and biogeography of the Gondwanan Orthocladiinae (Diptera: Chironomidae). Molecular Phylogenetics and Evolution, 59, 458–468. https://doi.org/10.1016/j.ympev.2011.03.003
  31. Krosch, M.N., Cranston, P.S., Bryant, L.M., Strutt, F. & McCluen, S.R. (2017) Towards a dated molecular phylogeny of the Tanypodinae (Chironomidae, Diptera). Invertebrate Systematics, 31, 302–316. https://doi.org/10.1071/IS16046
  32. Krosch, M.N., Silva, F.L., Ekrem, T., Baker, A.M., Bryant, L.M., Stur, E. & Cranston, P.S. (2022) A new molecular phylogeny for the Tanypodinae (Diptera: Chironomidae) places the Australian diversity in a global context. Molecular Phylogenetics and Evolution, 166, 107324. https://doi.org/10.1016/j.ympev.2021.107324
  33. Larocque-Tobler, I. (2014) The Polish sub-fossil chironomids. Palaeontologia Electronica, 17 (1), 1–28.
  34. Lin, X. L., Stur, E. & Ekrem, T. (2015) Exploring genetic divergence in a species-rich insect genus using 2790 DNA barcodes. PLoS ONE, 10 (9), e0138993. https://doi.org/10.1371/journal.pone.0138993
  35. Maltchik, L., Schmidt-Dalzochiov, M., Stenert, C.Y. & Rolon, A.S. (2012) Diversity and distribution of aquatic insects in Southern Brazil wetlands: implications for biodiversity conservation in a Neotropical region. Revista de Biología Tropical, 60 (1), 273–289. https://doi.org/10.15517/rbt.v60i1.2761
  36. Marusik, Y.M. & Koponen, S. (2005) A survey of spiders (Araneae) with Holarctic distribution. Journal of Arachnology, 33, 300–305. https://doi.org/10.1636/04-115.1
  37. O’Meara, B. (2010) New heuristic methods for joint species delimitation and species tree inference. Systematic Biology, 59, 59–73. https://doi.org/10.1093/sysbio/syp077
  38. Pebesma, E. & Bivand, R. (2020) Rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R Package. Version 1.5-18. Available from: https://CRAN.R-project.org/package=rgdal (accessed 23 August 2023)
  39. Pearl, H., Ryan, T., Howard, M., Shimizu, Y. & Shapcott, A. (2022) DNA Barcoding to Enhance Conservation of Sunshine Coast Heathlands. Diversity, 14, 436. https://doi.org/10.3390/d14060436
  40. Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: The Barcode of Life Data System. Molecular Ecology Notes, 7 (3), 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  41. R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available from: https://www.R-project.org/ (accessed 23 August 2023)
  42. Roback, S.S. (1971) The adults of the subfamily Tanypodinae (=Pelopinae) in North America (Diptera: Chironomidae). The Academy of Natural Sciences of Philadelphia 19th and the Parkway Philadelphia, 17, 1–410.
  43. Roback, S.S. (1987) The immature chironomids of the eastern United States. IX. Pentaneurini - Genus Labrundinia with the description of some Neotropical material. Proceedings of the Academy of Natural Sciences of Philadelphia, 139, 159–209.
  44. Rodríguez, J., Hortal, J. & Nieto, M. (2006) An evaluation of the influence of environment and biogeography on community structure: the case of Holarctic mammals. Journal of Biogeography, 33 (2), 291–303. https://doi.org/10.1111/j.1365-2699.2005.01397.x
  45. Roslin, T., Somervuo, P., Pentinsaari, M., Hebert, P.D.N., Agda, J., Ahlroth, P., Anttonen, P., Aspi, J., Blagoev, G., Blanco, S., Chan, D., Clayhills, T., deWaard, J., deWaard, S., Elliot, T., Elo, R., Haapala, S., Helve, E., Ilmonen, J., Hirvonen, P., Ho, C., Itamies, J., Ivanov, V., Jakovlev, J., Juslen, A., Jussila, R., Kahanpaa, J., Kaila, L., Jari, P., Kakko, A., Kakko, I., Karhu, A., Karjalainen, S., Kjaerandsen, J., Koskinen, J., Laasonen, E.M., Laasonen, L., Laine, E., Lampila, P., Levesque-Beaudin, V., Lu, L., Lahteenaro, M., Majuri, P., Malmberg, S., Manjunath, R., Martikainen, P., Mattila, J., McKeown, J., Metsala, P., Miklasevskaja, M., Miller, M., Miskie, R., Muinonen, A., Veli, M., Naik, S., Nikolova, N., Nupponen, K., Ovaskainen, O., Osterblad, I., Paasivirta, L., Pajunen, T., Parkko, P., Paukkunen, J., Penttinen, R., Perez, K., Pohjoismaki, J., Prosser, S., Raekunnas, M., Rahulan, M., Rannisto, M., Ratnasingham, S., Raukko, P., Rinne, A., Rintala, T., Miranda Romo, S., Salmela, J., Salokannel, J., Savolainen, R., Schulman, L., Sihvonen, P., Soliman, D., Sones, J., Steinke, C., Stahls, G., Tabell, J., Tiusanen, M., Varkonyi, G., Vesterinen, E.J., Viitanen, E., Vikberg, V., Viitasaari, M., Vilen, J., Warne, C., Wei, C., Winqvist, K., Zakharov, E. & Mutanen, M. (2022) A molecular-based identification resource for the arthropods of Finland. Molecular Ecology Resources, 22, 803–822. https://doi.org/10.1111/1755-0998.13510
  46. Silva, F.L. & Ekrem, T. (2016) Phylogenetic relationships of nonbiting midges in the subfamily Tanypodinae (Diptera: Chironomidae) inferred from morphology. Systematic Entomology, 41, 73–92. https://doi.org/10.1111/syen.12141
  47. Silva, F.L., Ekrem, T. & Fonseca-Gessner, A.A. (2013) DNA barcodes for specie delimitation in Chironomidae (Diptera): a case study on the genus Labrundinia. Canadian Entomologist, 145, 589–602. https://doi.org/10.4039/tce.2013.44
  48. Silva, F.L., Fonseca-Gessner, A.A. & Ekrem, T. (2014b) Out of South America: phylogeny of non-biting midges in the genus Labrundinia suggests multiple dispersal events to Central and North America. Zoologica Scripta, 44 (1) 59–71. https://doi.org/10.1111/zsc.12089
  49. Silva, F.L. & Fonseca-Gessner, A.A. (2009) The immature stages of Labrundinia tenata (Diptera: Chironomidae: Tanypodinae) and redescription of the male. Zoologia, 26, 541–546. https://doi.org/10.1590/S1984-46702009000300018
  50. Silva, F.L., Fonseca-Gessner, A.A. & Ekrem, T. (2011) Revision of Labrundinia maculata Roback, 1971, a new junior synonym of L. longipalpis (Goetghebuer, 1921) (Diptera: Chironomidae: Tanypodinae). Aquatic Insects, 33, 293–303. https://doi.org/10.1080/01650424.2011.640434
  51. Silva, F.L., Fonseca-Gessner, A.A. & Ekrem, T. (2014a) A taxonomic revision of genus Labrundinia Fittkau, 1962 (Diptera: Chironomidae: Tanypodinae). Zootaxa, 3769 (1), 1–185. https://doi.org/10.11646/zootaxa.3769.1.1
  52. Silva, F.L., Pinho, L.C., Stur, E, Nihei, S.S. & Ekrem, T. (2023) DNA barcodes provide insights into the diversity and biogeography of the non-biting midge Polypedilum (Diptera, Chironomidae) in South America. Ecology and Evolution. [published online] https://doi.org/10.22541/au.167592622.27180121/v1
  53. Silva, F.L., Wiedenbrug, S. & Farrell, B.D. (2015) A preliminary survey of the non-biting midges (Diptera: Chironomidae) of the Dominican Republic. CHIRONOMUS Journal of Chironomidae Research, 28, 12–19. https://doi.org/10.5324/cjcr.v0i28.1925
  54. Silva, F.L., Wiedenbrug, S., Trivinho-Strixino, S., Oliveira, C.S.N. & Pepinelli, M. (2012) Two new species of Hudsonimyia Roback, 1979 (Diptera: Chironomidae: Tanypodinae) from Neotropical Region unveiled by morphology and DNA barcoding. Journal of Natural History, 46, 1615–1638. https://doi.org/10.1080/00222933.2012.681315
  55. Siri, A., Donato, M., Spaccesi, F., Arpellino, J.P.Z., Canzaro, L.N.S. & Maud, M. (2022) Composition and structure of the Chironomidae (Insecta: Diptera) assemblage of Ventania hill system streams (Argentina) along an altitudinal gradient. Annals of the Brazilian Academy of Sciences, 94 (4), e20200314. https://doi.org/10.25085/rsea.810202
  56. Song, C., Lin, X., Wang, Q. & Wang, X. (2018) DNA barcodes successfully delimit morphospecies in a superdiverse insect genus. Zoologica Scripta, 47 (3), 311–324. https://doi.org/10.1111/zsc.12284
  57. Soponis, A.R. (1990) A revision of the Holarctic species of Orthocladius (Euorthocladius) (Diptera: Chironomidae). SPIXIANA Supplement, 13, 1–56.
  58. Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar, I. & Sliepčević, A. (1985) Procesi taloženja kalcita u krškim vodama s posebnim osvrtom na Plitvička jezera. Carsus Iugoslavie, 11, 101–204.
  59. Steinke, D., DeWaard, S., Sones, J., Ivanova, N.V., Prosser, S.W.J., Perez, K., Braukmann, T.W.A., Milton, M., Zakharov, E.V., deWaard, J.R., Ratnasingham, S. & Hebert, P.D.N. (2022) Message in a Bottle—Metabarcoding Enables Biodiversity Comparisons Across Ecoregions. GigaScience, 11, giac040. https://doi.org/10.1093/gigascience/giac040
  60. Stilinović, B. & Božičević, S. (1998) The Plitvice Lakes–a natural phenomenon in the middle of the Dinaric karst in Croatia. European Water Management, 1, 15–24.
  61. Sæther, O.A. (1979) Chironomid communities as water quality indicators. Holarctic Ecology, 2, 65–74. https://doi.org/10.1111/j.1600-0587.1979.tb00683.x
  62. Stur, E., Silva, F.S. & Ekrem, T. (2019) Back from the past: DNA Barcodes and morphology support Ablabesmyia americana Fittkau as a valid species (Diptera: Chironomidae). Diversity, 11, 173. https://doi.org/10.3390/d11090173
  63. Uieda, S.V. & Marçal, S. (2020) How the structure of a phytophilous chironomid assemblage responds to a lake level drawdown for submerged macrophyte control in a tropical reservoir. Limnetica, 39 (2), 555–569.
  64. Vallenduuk, H.J. & Moller-Pillot, H.K.M. (2007) Chironomidae larvae: General Ecology and Tanypodinae. KNNV Publishing, Zeist, 144 pp.
  65. Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. Available from: https://ggplot2.tidyverse.org/ (accessed 23 August 2023)