Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-04-26
Page range: 271-293
Abstract views: 270
PDF downloaded: 15

Disentangling cryptic species in Parastenocarididae (Copepoda: Harpacticoida) with an integrative approach: the case of Stammericaris similior sp. nov. and Stammericaris destillans Bruno & Cottarelli 2017

Research and Innovation Centre; Fondazione Edmund Mach; Via E. Mach 1; 38098 San Michele all’Adige (TN); Italy.
Department for Innovation in Biological; Agro-food and Forest Systems; Tuscia University; Largo dell’Università snc; 01100 Viterbo; Italy.
Department of Biological; Geological and Environmental Sciences; Catania University; Via Androne 81; 95124 Catania; Italy.
Department of Biological; Geological and Environmental Sciences; Catania University; Via Androne 81; 95124 Catania; Italy.
Department of Biological; Geological and Environmental Sciences; Catania University; Via Androne 81; 95124 Catania; Italy.
Department of Biological; Chemical and Pharmaceutical Sciences and Technologies; University of Palermo; Via Archirafi 18; 90123 Palermo; Italy.; NBFC; National Biodiversity Future Center; 90133 Palermo; Italy.
Department of Biological; Chemical and Pharmaceutical Sciences and Technologies; University of Palermo; Via Archirafi 18; 90123 Palermo; Italy.
Crustacea COI gene epikarst cave fauna crustacean stygofauna

Abstract

Stammericaris similior sp. nov. is described combining light microscopy, scanning electron microscopy, and genetic barcoding. The new species was collected from rimstone pools in Scrivilleri Cave, a cave in Sicily with so far unexplored microcrustacean fauna. The new species is particularly interesting because it is morphologically very similar to Stammericaris destillans, an epikarstic parastenocaridid endemic to a different Sicilian cave; however, the phylogenetic analysis based on the mitochondrial COI gene of sixteen parastenocaridids shows that these two Stammericaris are two distinct species, with an uncorrected p-distance of 22.9, and the sequences of Stammericaris similior sp. nov. cluster together in a well-supported monophyletic clade, with two different haplotypes. To our knowledge, the presence of different species of almost identical morphology had not been recorded before for the genus Stammericaris. The integrated molecular and morphological analysis, the latter conducted with the support of SEM, allows disentangling the affinities of the new species and identifying a few distinctive characters: the males of the new species are characterized by the caudal rami shorter than the anal somite; the morphology of the P3, which is thin and slightly arched, with three proximal spinules on exp-1; the peculiar structure of the P4 enp; the P4 basis ornamented with two spinules of different length, the one closest to the endopod being the shortest one, and a half-moon shaped lamella. The new species differs from S. destillans for its larger size, the presence of: three spinules, instead of two, on the P3 exp-1; the half-moon shaped lamella on the P4 basis; a row of spinules along the inner margin of P4 exp-1. We also provide data on the ecology and distribution of the new species, a list of the other copepod species collected, and a dichotomic key for the males of all species presently assigned to the genus.

 

References

  1. Belaiba, E., Marrone, F., Vecchioni, L., Bahri-Sfar, L. & Arculeo, M. (2019) An exhaustive phylogeny of the combtooth blenny genus Salaria (Pisces. Blenniidae) shows introgressive hybridization and lack of reciprocal mtDNA monophyly between the marine species Salaria basilisca and Salaria pavo. Molecular Phylogenetics and Evolution, 135, 210–221. https://doi.org/10.1016/j.ympev.2019.02.026 DOI: https://doi.org/10.1016/j.ympev.2019.02.026
  2. Brancelj, A. (2003) Biological sampling for epikarst water. In: Jones, W.K., Culver, D.C., Herman, J.S. (Eds.), Epikarst. Proceedings of the Karst Water Institute symposium. 1–4 Octobre 2003, Sheperdstown (WV). Karts Water Institute Special Publication No. 9. Karts Water Institute, Lewisburg, Pennsylvania, pp. 99–103.
  3. Bruno, M.C., Cottarelli, V., Hauffe, H.C., Rossi, C., Obertegger, U., Spena, M.T. & Grasso, R. (2017) Morphological and phylogenetic analyses of epikarstic Parastenocarididae (Copepoda: Harpacticoida) from two Sicilian caves, and description of a new Stammericaris. Zootaxa, 4350 (2), 251–283. https://doi.org/10.11646/zootaxa.4350.2.3 DOI: https://doi.org/10.11646/zootaxa.4350.2.3
  4. Bruno, M.C., Cottarelli, V., Grasso, R., Latella, L., Zaupa, S. & Spena, M.T. (2018) Epikarstic crustaceans from some Italian caves: endemisms and spatial scales. Biogeographia—The Journal of Integrative Biogeography, 33, 1–18. https://doi.org/10.21426/B633035812 DOI: https://doi.org/10.21426/B633035812
  5. Bruno, M.C., Cottarelli, V., Marrone, F., Grasso, R., Stefani, E., Vecchioni, L. & Spena, M.T. (2020) Morphological and molecular characterization of three new Parastenocarididae (Copepoda: Harpacticoida) from caves in Southern Italy. European Journal of Taxonomy, 689, 1–46. https://doi.org/10.5852/ejt.2020.689 DOI: https://doi.org/10.5852/ejt.2020.689
  6. Chappuis, P.A. (1924) Descriptions préliminaires de Copépodes nouveaux de Serbie. Buletinul Societatii de Stiinte din Cluj, România, 2 (2), 27–45
  7. Chappuis, P.A. (1936) Subterrane Harpacticoiden aus Jugoslavien. Buletinul Societatii de Stiinte din Cluj, România, 8, 386–398.
  8. Chappuis, P.A. (1937) Subterrane Harpacticoiden aus Nord-Spanien. Buletinul Societatii de Stiinte din Cluj, România, 8, 556–571.
  9. Chappuis, P.A. (1938) Subterrane Harpacticoiden aus Süd-Italien. Buletinul Societatii de Stiinte din Cluj, România, 9, 153–181.
  10. Chappuis, P.A. (1940) Die Harpacticoiden des Grundwassers des unteren Maintales. Archiv für Hydrobiologie, 36, 286–305.
  11. Cavallaro, F. (1998) Fenomeni carsici nel territorio di Melilli. In: Centro Speleologico Etneo (Ed.), Le grotte del territorio di Melilli. Comune di Melilli, Melilli, pp. 45–58.
  12. Corgosinho, P.H.C., Martínez Arbizu, P. & Santos-Silva, E.N. (2007) Three new species of Remaneicaris Jakobi, 1972 (Copepoda, Harpacticoida, Parastenocarididae) from the Ribeirão do Ouro River, Minas Gerais, Brazil, with some remarks on the groundpattern of the Parastenocarididae. Zootaxa, 1437, 1–28. DOI: https://doi.org/10.11646/zootaxa.1437.1.1
  13. Cottarelli, V. (1969) Nuove Parastenocaris (Copepoda, Harpacticoida) dell’Italia centro–meridionale. Rivista di Idrobiologia, 8, 1–28.
  14. Cottarelli, V. (1972) Parastenocaris (Copepoda, Harpacticoida) di alcuni laghi vulcanici del Lazio. Istituto Lombardo (Rendiconti Scientifici) B, 106, 138–155.
  15. Cottarelli, V. & Drigo, E. (1972) Sulla presenza di Parastenocaris orcina Chappuis (Cop. Harpacticoida) in acque interstiziali del Lago di Bracciano. Notiziario del Circolo Speleologico Romano, 17, 51–54.
  16. Cottarelli, V. & Bruno, M.C. (2021) The genus Stammericaris Jakobi (Copepoda: Harpacticoida: Parastenocarididae) in the Nearctic subregion: description of Stammericaris remotaepatriae sp. nov., proposal of Stammericaris palmerae (Reid 1992) comb. nov., and remarks on other North American Parastenocarididae. Zootaxa, 5047 (2), 177–191. https://doi.org/10.11646/zootaxa.5047.2.7 DOI: https://doi.org/10.11646/zootaxa.5047.2.7
  17. Cottarelli, V., Bruno, M.C., Spena, M.T. & Grasso, R. (2012) Studies on subterranean copepods from Italy, with descriptions of two new epikarstic species from a cave in Sicily. Zoological Studies, 51, 556–82.
  18. Deng, Z., Yao, Y., Blair, D., Hu, W. & Yin, M. (2022) Ceriodaphnia (Cladocera: Daphniidae) in China: Lineage diversity, phylogeography and possible interspecific hybridization. Molecular Phylogenetics and Evolution, 175, 107586. https://doi.org/10.1016/j.ympev.2022.107586. DOI: https://doi.org/10.1016/j.ympev.2022.107586
  19. Ferrari, F.D. & Ivanenko, V.N. (2008) Remarks on the “Subcoxa” hypothesis from Bäcker et al. Zoologischer Anzeiger—A Journal of Comparative Zoology, 248, 33–3. https://doi.org/10.1016/j.jcz.2008.10.001 DOI: https://doi.org/10.1016/j.jcz.2008.10.001
  20. Ficetola, G.F., Canedoli, C. & Stoch, F. (2019) The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conservation Biology, 33, 214–216. https://doi.org/10.1111/cobi.13179. DOI: https://doi.org/10.1111/cobi.13179
  21. Franco, F.F., Lavagnini, T.C., Sene, F. & Manfrin, M.H. (2015) Mito-nuclear discordance with evidence of shared ancestral polymorphism and selection in cactophilic species of Drosophila. Biological Journal of the Linnean Society, 116, 197–210. https://doi.org/10.1111/bij.12554. DOI: https://doi.org/10.1111/bij.12554
  22. Galassi, D.M.P. & De Laurentiis, P. (2004) Towards a revision of the genus Parastenocaris Kessler, 1913: establishment of Simplicaris gen. nov. from groundwaters in central Italy and review of the P. brevipes–group (Copepoda, Harpacticoida, Parastenocarididae). Zoological Journal of the Linnean Society, 140, 417–436. DOI: https://doi.org/10.1111/j.1096-3642.2003.00107.x
  23. Huys, R. & Boxshall, G.A. (1991) Copepod Evolution. The Ray Society, London, 468 pp.
  24. Jakobi, H. (1972) Trends (Enp. P4) innerhalb der Parastenocarididen (Copepoda Harpacticoidea). Crustaceana, 22, 127–146. DOI: https://doi.org/10.1163/156854072X00390
  25. Kiefer, F. (1938) Cyclopiden (Crust. Cop.) aus süditalienischen Brunnen und Höhlen. Zoologischer Anzeiger 123 (1–2), 1–12.
  26. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096 DOI: https://doi.org/10.1093/molbev/msy096
  27. Nitzu, E., Vlaicu, M., Giurginca, A., Meleg, I.N., Popa, I., Nae, A. & Baba, Ş. (2018) Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. International Journal of Speleology, 47 (1), 43–52. https://doi.org/10.5038/1827-806X.47.1.2147 DOI: https://doi.org/10.5038/1827-806X.47.1.2147
  28. Noodt, W. (1954) Die Verbeitung des Genus Parastenocaris, ein Beispiel einer subterranen Crustaceen-Gruppe. Verhandlungen der Deutschen Zoologichen Gesellschaft, 1954, 429–435.
  29. Pedley, H.M. (1981) Sedimentology and palaeoenvironment of the southeast Sicilian Tertiary platform carbonates. Sedimentary Geology, 28, 273 –291. https://doi.org/10.1016/0037-0738(81)90050-6 DOI: https://doi.org/10.1016/0037-0738(81)90050-6
  30. Pesce, G.L. (1985) A new harpacticoid from phreatic waters of Lesbos, Greece, and notes on the ‘Rassenkreise’ of Elaphoidella elaphoides (Chappuis) (Copepoda: Ameiridae). Revue Suisse de Zoologie, 92 (3), 605–612. DOI: https://doi.org/10.5962/bhl.part.81895
  31. Pesce, G.L. & Galassi, D.M.P. (1987) Copepodi di acque sotterranee della Sicilia. Animalia, 14, 193–235.
  32. Pesce, G.L., Galassi, D.M.P. & Cottarelli, V. (1988) First representative of the family Parastenocaridae from Sicily (Italy), and description of two new species of Parastenocaris Kessler (Crustacea Copepoda: Harpacticoida). Bulletin Zoölogisch Museum, Universiteit van Amsterdam, 11, 137–141.
  33. Petkovski, T.K. (1959) Neue und bemerkenswerte Harpacticoide Ruderfusskrebse (Crust. Cop.) aus den Grundgewässern Jugoslaviens. Acta Musei Macedonici Scientiarum Naturalium, Skopje, 6 (5), 101–119
  34. Prosser, S., Martínez-Arce, A. & Elías-Gutiérrez, M. (2013) A new set of primers for COI amplification from freshwater microcrustaceans. Molecular Ecology Resources, 13, 1151–1155. https://doi.org/10.1111/1755-0998.12132 DOI: https://doi.org/10.1111/1755-0998.12132
  35. Regione Sicilia (2016) Piano di gestione del Distretto Idrografico della Sicilia-Allegato 2b—Monitoraggio delle Acque Sotterranee, 159 pp. Available from: http://pti.regione.sicilia.it/portal/page/portal/PIR_PORTALE/PIR_LaStrutturaRegionale/PIR_AssEnergia/PIR_Dipartimentodellacquaedeirifiuti/PIR_Areetematiche/PIR_Settoreacque/PIR_PianoGestioneDistrettoIdrograficoSicilia/PIR_AllegatiPianodiGestioneAcque (accessed 15 December 2022)
  36. Reid, J.W. (1992) Diacyclops albus n.sp. and Parastenocaris palmerae n.sp. (Crustacea: Copepoda) from the meiofauna of a stream bed in Virginia, U.S.A. Canadian Journal of Zoology, 69, 2893–2902. DOI: https://doi.org/10.1139/z91-408
  37. Richterich, P. (1998) Estimation of errors in “raw” DNA sequences: a validation study. Genome Research, 8 (3), 251–259. https://doi.org/10.1101/gr.8.3.251 DOI: https://doi.org/10.1101/gr.8.3.251
  38. Rigo, M. & Barberi, F. (1959) Stratigrafia pratica applicata in Sicilia. Bollettino del Servizio Geologico d’Italia, 80, 1–98.
  39. Rouch, R. (1986) Copepoda: les harpacticoïdes souterrains des eaux douce continentales. In: Botosaneanu, L. (Ed.), Stygofauna Mundi. A faunistic, distributional, and ecological synthesis of the world fauna inhabiting subterranean waters (including the marine interstitial). E. J. Brill, Leiden, pp. 321–355.
  40. Schminke, H.K. (2013) Stammericaris Jakobi, 1972 redefined and a new genus of Parastenocarididae (Copepoda, Harpacticoida). Crustaceana, 86, 704–717. DOI: https://doi.org/10.1163/15685403-00003196
  41. Tang, C.Q., Leasi, F., Obertegger, U., Kieneke, A., Barraclough, T.G. & Fontaneto, D. (2012) The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences of the United States of America, 109, 16208–16212. https://doi.org/10.1073/pnas.1209160109 DOI: https://doi.org/10.1073/pnas.1209160109
  42. Thielsch, A., Knell, A., Mohammadyari, A., Petrusek, A. & Schwenk, K. (2017) Divergent clades or cryptic species? Mitonuclear discordance in a Daphnia species complex. BMC Evolutionary Biology, 17, 227. https://doi.org/10.1186/s12862-017-1070-4. DOI: https://doi.org/10.1186/s12862-017-1070-4
  43. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673 DOI: https://doi.org/10.1093/nar/22.22.4673
  44. Toews, D.P.L. & Brelsford, A. (2012) The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21, 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x. DOI: https://doi.org/10.1111/j.1365-294X.2012.05664.x
  45. Vecchioni, L., Marrone, F., Rodilla, M., Belda, E.J. & Arculeo, M. (2019) An account on the taxonomy and molecular diversity of a Mediterranean rock pool-dwelling harpacticoid copepod, Tigriopus fulvus (Fischer, 1860) (Copepoda, Harpacticoida). Ciencias Marinas, 45 (2), 59–75. https://doi.org/10.7773/cm.v45i2.2946 DOI: https://doi.org/10.7773/cm.v45i2.2946