Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2022-11-25

Earthworm biodiversity in Morocco: First survey of earthworm richness, diversity and distribution in the Souss-Massa region

Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, 10090 Rabat, Morocco.
Regional Center of Agricultural Research of Kenitra, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, 10090 Rabat, Morocco.
Regional Center of Agricultural Research of Kenitra, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, 10090 Rabat, Morocco. Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, 80000, Morocco.
Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, 10090 Rabat, Morocco.
Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, 10090 Rabat, Morocco.
Annelida Oligochaeta Lumbricidae endogeic soil organisms ecosystem engineers irrigated perimeters

Abstract

Although earthworms are the key drivers of most valuable ecosystem services and the main indicators of soil health, the existing ecotypes in Moroccan soils are largely unknown. The lack of records for many regions and limited data for others is a major obstacle to making the most of earthworms in sustaining the key ecosystem services they provide. This study investigates, for the first time, the earthworm biodiversity in cultivated soils in 4 irrigated perimeters of the arid region of Souss-Massa. Soil pits (25 x 25 x 30cm, n = 5) at 40 sampling sites were examined by digging, hand-sorting, and using a chemical expellant solution. From the 200 pits dug, 418 adult earthworms and 1182 juveniles were collected. Five new regional records of earthworms, namely Aporrectodea caliginosa, Aporrectodea longa, Aporrectodea rosea, Eiseniella tetraedra, and Microscolex dubius, were identified. A. longa was identified as a new species record for the earthworm fauna of Morocco raising the numbers from 13 declared species to 14. Most earthworms (60 %) were endogeic species in the majority of sampled sites. The occurrence of A. rosea (50% of sampled sites) and A. caliginosa (48% of sampled sites) reflects their frequent detection in the study area. Our results indicate that earthworms do exist in arid and semi-arid climates at significant densities, particularly along the crop rows where the drip irrigation laterals lie.

 

References

  1. Abahous, H., Bouchaou, L. & Chehbouni, A. (2021) Global Climate Pattern Impacts on Long-Term Olive Yields in Northwestern Africa: Case from Souss-Massa Region. Sustainability 13. https://doi.org/10.3390/su13031340
    Ait Brahim Y. and Seif-Ennasr, M. and M.M. and N.B. and C.R. and E.M.Z.E.A. and S.A. and A.H. and B.L. (2017) Assessment of Climate and Land Use Changes: Impacts on Groundwater Resources in the Souss-Massa River Basin. In: R. and B. L. and B. D. Choukr‐Allah Redouane and Ragab (Ed), The Souss‐Massa River Basin, Morocco. Springer International Publishing, Cham, pp. 121–142.
    Anderson, J.M. & Ingram, J.S.I. (1993) Tropical Soil Biology and Fertility a Handbook of Methods. 2nd ed. Oxford University Press, Oxford , undefined-240.
    Baha, M. (1997) The earthworm fauna of Mitidja, Algeria. Tropical Zoology 10. https://doi.org/10.1080/03946975.1997.10539340
    Baker, G., Buckerfield, J., Grey-Gardner, R., Merry, R. & Doube, B. (1992) The abundance and diversity of earthworms in pasture soils in the fleurieu peninsula, south australia. Soil Biology and Biochemistry 24, 1389–1395. https://doi.org/10.1016/0038-0717(92)90123-F
    Baldivieso-Freitas, P., Blanco-Moreno, J.M., Gutiérrez-López, M., Peigné, J., Pérez-Ferrer, A., Trigo-Aza, D. & Sans, F.X. (2018) Earthworm abundance response to conservation agriculture practices in organic arable farming under Mediterranean climate. Pedobiologia 66, 58–64. https://doi.org/10.1016/j.pedobi.2017.10.002
    Barrios, E., Valencia, V., Jonsson, M., Brauman, A., Hairiah, K., Mortimer, P.E. & Okubo, S. (2018) Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. International Journal of Biodiversity Science, Ecosystem Services & Management 14, 1–16. https://doi.org/10.1080/21513732.2017.1399167
    Bazri, K. (2015) Étude de la biodiversité des lombriciens et leurs relations avec les propriétés du sol dans différents étages bioclimatiques, dans l’est algérien. .
    Bazri, K., Ouahrani, G., Gheribi-Aoulmi, Z. & Cosín, D.D. (2013) La diversité des lombriciens dans l’Est algérien depuis la côte jusqu’au désert. ecologia mediterranea 39.
    Belahlou, S. (2016) Biodiversité des lombriciens dans la wilaya de Mila.
    Blakemore, R.J. (2016) Cosmopolitan earthworms – an eco-taxonomic guide to the peregrine species of the world. 6th ed. VermEcology, Yokohama, Japan, undefined-980.
    Blouin, M., Hodson, M.E., Delgado, E.A., Baker, G., Brussaard, L., Butt, K.R., Dai, J., Dendooven, L., Peres, G., Tondoh, J.E., Cluzeau, D. & Brun, J.J. (2013) A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science 64, 161–182. https://doi.org/10.1111/ejss.12025
    Brown, K.D. (2018) Earthworm Recorder’s Handbook. Preston Montford.
    Butt, K.R. (1991) The effects of temperature on the intensive production of lumbricus-terrestris (Oligochaeta, Lumbricidae). Pedobiologia 35, 257–264.
    Butt, K.R. & Lowe, C.N. (2011) Controlled Cultivation of Endogeic and Anecic Earthworms. In: A. Karaca (Ed), Biology of Earthworms. Springer Berlin Heidelberg, Berlin, pp. 107–121.
    Chan, K.Y. & Barchia, I. (2007) Soil compaction controls the abundance, biomass and distribution of earthworms in a single dairy farm in south-eastern Australia. Soil and Tillage Research 94, 75–82. https://doi.org/10.1016/j.still.2006.07.006
    Cook, S.M.F. & Linden, D.R. (1996) Effect of food type and placement on earthworm (Aporrectodea tuberculata) burrowing and soil turnover. Biology and Fertility of Soils 21, 201–206. https://doi.org/10.1007/bf00335936
    Dlamini, T., Haynes, R. & van Antwerpen, R. (2001) Exotic earthworm species dominant in soils on sugarcane estates in the Eshowe area of the north coast of KwaZulu-Natal. In: Annual Congress of South African Sugar Technologists Association. , pp. 217–221.
    El-Okki, M.E.-H., Sahli, L. & Rached, O. (2013) Advances in Earthworm Taxonomy VI (Annelida: Oligochaeta) : Distribution of earthworms in the Kebir-Rhumel Basin (North-East Algeria) (Oligochaeta: Acanthodrilidae, Criodrilidae, Lumbricidae). In: T. Pavlíček, P. Cardet, A. M. Teresa, C. Pascoal, and F. Cássio (Eds), Proceedings of the 6th International Oligochaete Taxonomy Meeting (6th IOTM). Kasparek Verlag, Heidelberg, Palmeira de Faro, Portugal, pp. 87–97.
    Fletcher, J.J. (1887) Notes on Australian Earthworms.  Part IV. In: Proceedings of the Linnean Society of New South Wales. , pp. 601–620.
    van Groenigen, J.W., Lubbers, I.M., Vos, H.M.J., Brown, G.G., de Deyn, G.B. & van Groenigen, K.J. (2014) Earthworms increase plant production: a meta-analysis. Scientific Reports 4, 6365. https://doi.org/10.1038/srep06365
    Hallam, J. & Hodson, M.E. (2021) Earthworms and soil water regulation: A review. AFRIMED Agricultural Journal–Al Awamia 130, 89–135.
    el Harti, A. & Raouane, M. (2009) Détermination de la région d’excrétion des substances rhizogènes chez Lumbricus terrestris L. Biotechnologie, Agronomie, Société et Environnement 13, 85–92.
    Johnston, A.S.A., Holmstrup, M., Hodson, M.E., Thorbek, P., Alvarez, T. & Sibly, R.M. (2014) Earthworm distribution and abundance predicted by a process-based model. Applied Soil Ecology 84, 112–123. https://doi.org/10.1016/j.apsoil.2014.06.001
    Karim, B. & Dahbia, H. (2016) Earthworm Species Identified in the Region of Tebessa (Eastern Algeria). International Journal of Zoological Research 13. https://doi.org/10.3923/ijzr.2017.38.44
    Lowe, C.N. & Butt, K.R. (2005) Culture techniques for soil dwelling earthworms: A review. Pedobiologia 49, 401–413. https://doi.org/10.1016/j.pedobi.2005.04.005
    Martinez-Ansemil, E. & Giani, N. (1987) The distribution of aquatic oligochaetes in the south and eastern Mediterranean area. Hydrobiologia 155, 293–303. https://doi.org/10.1007/BF00025662
    McColl, H.P. (1984) Nematicides and field population of enchytraeids and earthworms. Soil Biology and Biochemistry 16, 139–143. https://doi.org/10.1016/0038-0717(84)90104-4
    Mulumba, L.N. (2015) Tree Integration in Banana-Based Cropping Systems: A Case Study of Jinja, Uganda. In: B. R. and M. D. L. and K. D. and H. D. O. and E. L. O. Lal Rattan and Singh (Ed), Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa. Springer International Publishing, Cham, pp. 289–304.
    Nieminen, M., Ketoja, E., Mikola, J., Terhivuo, J., Sirén, T. & Nuutinen, V. (2011) Local land use effects and regional environmental limits on earthworm communities in Finnish arable landscapes. Ecological Applications 21, 3162–3177. https://doi.org/10.1890/10-1801.1
    Omodeo, P. & Rota, E. (2008) Earthworm Diversity and Land Evolution in Three Mediterranean Districts. In: Proceedings of the California academy of sciences. California, pp. 65–83.
    Omodeo, P., Rota, E. & Baha, M. (2003) The megadrile fauna (Annelida: Oligochaeta) of Maghreb: a biogeographical and ecological characterization: The 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia 47, 458–465. https://doi.org/10.1078/0031-4056-00213
    Qiu, J.-P. & Bouché, M. (1998) Chronologie Nouvelles stations d’études de lombriciens et relation des taxons à celles ci. Doc. Pedozool. Integrol 3, 253–273.
    Reynolds, J.W. & Reeves, W.K. (2019) New earthworm (Oligochaeta: Lumbricidae) records in the United States and Morocco, plus a key to Moroccan earthworms. Megadrilogica 24, 107–127.
    Savigny, J.C. (1826) Analyses des travaux de l’Académie Royale des Sciences pendant l’année 1821, partie physique. In: M. Cuvier and G. le Baron (Eds), Mémoires d’Académie Royale des Sciences Institute de France. , pp. 176–184.
    Schneider, A.K. & Schroder, B. (2012) Perspectives in modelling earthworm dynamics and their feedbacks with abiotic soil properties. Applied Soil Ecology 58, 29–36. https://doi.org/10.1016/j.apsoil.2012.02.020
    Sims, R.W. & Gerard, B.M. (1999) Earthworms : keys and notes for the identification and study of the species. Rev. ed. Linnean Society of London and the Estuarine and Coastal DSciences Assocition by Field Studies Council, 173. Available from: http://lib.ugent.be/catalog/rug01:000506366 (Accessed 1 Nov. 2022)
    Stroud, J.L. (2019) Soil health pilot study in England: Outcomes from an on-farm earthworm survey. PloS one 14, e0203909–e0203909. https://doi.org/10.1371/journal.pone.0203909
    Ude, H. (1885) Über die Rückenporen der terricolen Oligochaeten, nebst Beiträge zur Histologie des Leibesschlauches und zur Sytematik der Lumbriciden. Zeitschrift für Wissenschaftliche Zoologie 43, 14–87.
    Zerrouki, L., Essarhane, W., Hamil, S. & Baha, M. (2021) The Earthworm Fauna of Chréa National Park (Algeria). In: M. Ksibi, A. Ghorbal, S. Chakraborty, H. I. Chaminé, M. Barbieri, G. Guerriero, O. Hentati, A. Negm, A. Lehmann, J. Römbke, A. Costa Duarte, E. Xoplaki, N. Khélifi, G. Colinet, J. Miguel Dias, I. Gargouri, E. D. van Hullebusch, B. Sánchez Cabrero, S. Ferlisi, C. Tizaoui, A. Kallel, S. Rtimi, S. Panda, P. Michaud, J. N. Sahu, M. Seffen, and V. Naddeo (Eds), Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (2nd Edition). Springer International Publishing, Cham, pp. 1363–1368.