Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-08-09
Page range: 165-180
Abstract views: 677
PDF downloaded: 37

The complete mitochondrial genome of Thereuopoda clunifera (Chilopoda: Scutigeridae) and phylogenetic implications within Chilopoda

College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, Jiangsu Province, People’s Republic of China
College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, Jiangsu Province, People’s Republic of China
College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, Jiangsu Province, People’s Republic of China
College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, Jiangsu Province, People’s Republic of China
College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, Jiangsu Province, People’s Republic of China
College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, Jiangsu Province, People’s Republic of China
College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, Jiangsu Province, People’s Republic of China
Myriapoda Thereuopoda clunifera Mitochondrial genome Chilopoda Phylogenetic analysis

Abstract

We determined the complete mitochondrial genome of Thereuopoda clunifera (Chilopoda: Scutigeridae) to clarify the phylogenetic status within Chilopoda. Using Sanger sequencing and next-generation sequencing technologies, the entire mitogenome of T. clunifera was assembled and annotated, with 14,898 bp in length and 37 genes (13 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes), which are usually found in arthropod mitogenomes. Only one D-loop contained no repeat element. The base composition of T. clunifera was found to be A + T content of 69.55% and G + C content of 30.45%. The AT-skew of T. clunifera was positive, while the GC-skew was negative. The gene order of T. clunifera was identical to that of Scutigera coleoptrata that has been unique among those so far determined for the Arthropoda. We also performed phylogenetic analyses of 25 Myriapoda species to further explore the taxonomic and evolutionary relationships within Myriapoda and Chilopoda. Phylogenetic analyses supported that the division of Chilopoda into subclasses Notostigmophora and Pleurostigmophora.

 

References

  1. Akram, A.M., Chaudhary, A., Kausar, H., Althobaiti, F., Abbas, A.S., Hussain, Z., Fatima, N., Zafar, E., Asif, W., Afzal, U., Yousaf, Z., Zafar, A., Harakeh, S.M. & Qamer, S. (2021) Analysis of RAS gene mutations in cytogenetically normal de novo acute myeloid leukemia patients reveals some novel alterations. Saudi journal of biological sciences, 28 (7), 3735–3740. https://doi.org/10.1016/j.sjbs.2021.04.089
    Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic acids research, 27 (8), 1767–1780. https://doi.org/10.1093/nar/27.8.1767
    Boore, J.L. & Brown, W.M. (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Current opinion in genetics & development, 8 (6), 668–674. https://doi.org/10.1016/s0959-437x(98)80035-x
    Cameron, S.L. (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual review of entomology, 59, 95–117. https://doi.org/10.1146/annurev-ento-011613-162007
    Chang, H., Qiu, Z., Yuan, H., Wang, X., Li, X., Sun, H., Guo, X., Lu, Y., Feng, X., Majid, M. & Huang, Y. (2020) Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Molecular phylogenetics and evolution, 145, 106734. https://doi.org/10.1016/j.ympev.2020.106734
    Chen, Y. (1959) Animal Atlas of China: Annelida (With Myriapoda). Science Press, Beijing, 78pp. [in Chinese]
    Clayton, D.A. (1992) Transcription and replication of animal mitochondrial DNAs. International Review of Cytology, 141, 217-232. https://doi.org/217–232.52.10.1016/s0074-7696(08)62067-7
    Dong, Y., Sun, H., Guo, H., Pan, D., Qian, C., Hao, S. & Zhou, K. (2012) The complete mitochondrial genome of Pauropus longiramus (Myriapoda: Pauropoda): implications on early diversification of the myriapods revealed from comparative analysis. Gene, 505 (1), 57–65. https://doi.org/10.1016/j.gene.2012.05.049
    Dowton, M., Cameron, S.L., Dowavic, J.I., Austin, A.D. & Whiting, M.F. (2009) Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Molecular biology and evolution, 26 (7), 1607–1617. https://doi.org/10.1093/molbev/msp072
    Dowton, M., Castro, L.R., Campbell, S.L., Bargon, S.D. & Austin, A.D. (2003) Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction. Journal of molecular evolution, 56 (5), 517–526. https://doi.org/10.1007/s00239-002-2420-3
    Edgecombe, G.D. & Giribet, G. (2004) Adding mitochondrial sequence data (16s rrna and cytochrome c oxidase subunit i) to the phylogeny of centipedes (Myriapoda: Chilopoda): an analysis of morphology and four molecular loci. Journal of zoological systematics & evolutionary research, 42 (2), 89–134. https://doi.org/10.1111/j.1439-0469.2004.00245.x
    Edgecombe, G.D. & Giribet, G. (2006) A century later – a total evidence re-evaluation of the phylogeny of Scutigeromorph centipedes (Myriapoda: Chilopoda). Invertebrate systematics, 20 (5), 503–525. https://doi.org/20.10.1071/IS05044
    Fernández, R., Edgecombe, G.D. & Giribet, G. (2016) Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction. Systematic Biology, 65 (5), 871–899. https://doi.org/10.1093/sysbio/syw041
    Fernández, R., Edgecombe, G.D. & Giribet, G. (2018). Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Scientific reports, 8 (1), 83. https://doi.org/10.1038/s41598-017-18562-w
    Fourdrilis, S., Martins, A.M.D. & Backeljau, T. (2018) Relation between mitochondrial DNA hyperdiversity, mutation rate and mitochondrial genome evolution in Melarhaphe neritoides (Gastropoda: Littorinidae) and other Caenogastropoda. Scientific reports, 8 (1), 17964. https://doi.org/10.1038/s41598-018-36428-7
    Gai, Y., Ma, H., Ma, J., Li, C. & Yang, Q. (2014) The complete mitochondrial genome of Scolopocryptops sp. (Chilopoda: Scolopendromorpha: Scolopocryptopidae). Mitochondrial DNA, 25 (3), 192–193. https://doi.org/10.3109/19401736.2013.792073
    Gai, Y., Ma, H., Sun, X., Ma, J., Li, C. & Yang, Q. (2013) The complete mitochondrial genome of Cermatobius longicornis (Chilopoda: Lithobiomorpha: Henicopidae). Mitochondrial DNA, 24 (4), 331–332. https://doi.org/10.3109/19401736.2012.760078
    Giribet, G. & Edgecombe, G.D. (2019). The phylogeny and evolutionary history of arthropods. Current biology, 29 (12), R592–R602. https://doi.org/10.1016/j.cub.2019.04.057
    Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology, 59 (3), 307–321. https://doi.org/10.1093/sysbio/syq010
    Hahn, C., Bachmann, L. & Chevreux, B. (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads--a baiting and iterative mapping approach. Nucleic Acids Research, 41, e129. https://doi.org/10.1093/nar/gkt371
    Hajibabaei, M., Singer, G.A., Hebert, P.D. & Hickey, D.A. (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in genetics, 23 (4), 167–172. https://doi.org/10.1016/j.tig.2007.02.001
    Hanada, K., Shiu, S.H. & Li, W.H. (2007) The nonsynonymous/synonymous substitution rate ratio versus the radical/conservative replacement rate ratio in the evolution of mammalian genes. Molecular biology and evolution, 24 (10), 2235–2241. https://doi.org/10.1093/molbev/msm152
    Hughes, A.L. & Nei, M. (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature, 335 (6186), 167–170. https://doi.org/10.1038/335167a0
    Hu, J., Liu, N. & Huang, Y. (2006) Research progress and gene sequence analysis of arthropod mitochondrial genome. Entomotaxonomia, 28, 153–160. [in Chinese] https://doi.org/10.3969/j.issn.1000-7482.2006.02.014
    Hurst, L.D. (2002) The ka/ks ratio: diagnosing the form of sequence evolution. Trends in genetics, 18 (9), 486. https://doi.org/10.1016/S0168-9525(02)02722-1
    Inoue, J.G., Miya, M., Tsukamoto, K. & Nishida, M. (2001) Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families. Journal of molecular evolution, 52 (4), 311–320. https://doi.org/10.1007/s002390010161
    Jamieson, B.G.M. (1986) The spermatozoa of the Chilopoda (Uniramia): an ultrastructural review with data on dimorphism in Ethmostigmus rubripes and phylogenetic discussion. Journal of Submicroscopic Cytology, 18, 543–558.
    Jex, A.R., Hall, R.S., Littlewood, D.T. & Gasser, R.B. (2010) An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. Nucleic acids research, 38 (2), 522–533. https://doi.org/10.1093/nar/gkp883
    Jex, A.R., Littlewood, D.T. & Gasser, R.B. (2010) Toward next-generation sequencing of mitochondrial genomes--focus on parasitic worms of animals and biotechnological implications. Biotechnology advances, 28 (1), 151–159. https://doi.org/10.1016/j.biotechadv.2009.11.002
    Jiang, P., Li, H., Song, F., Cai, Y., Wang, J., Liu, J. & Cai, W. (2016) Duplication and Remolding of tRNA Genes in the Mitochondrial Genome of Reduvius tenebrosus (Hemiptera: Reduviidae). International journal of molecular sciences, 17 (6), 951. https://doi.org/10.3390/ijms17060951
    Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution, 33 (7), 1870–1874. https://doi.org/10.1093/molbev/msw054
    Kumazawa, Y., Ota, H., Nishida, M. & Ozawa, T. (1996) Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Molecular biology and evolution, 13 (9), 1242–1454. https://doi.org/10.1093/oxfordjournals.molbev.a025690
    Lau, N.S., Sam, K.K., Ahmad, A.B., Siti, K.A., Zafir, A.W.A. & Shu-Chien, A.C. (2021) Gene arrangement and adaptive evolution in the mitochondrial genomes of terrestrial sesarmid crabs Geosesarma faustum and Geosesarma penangensis. Frontiers in ecology and evolution, 9, 778570. https://doi.org/10.3389/fevo.2021.778570
    Lavrov, D.V., Boore, J.L. & Brown, W.M. (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Molecular biology and evolution, 19 (2), 163–169. https://doi.org/10.1093/oxfordjournals.molbev.a004068
    Lavrov, D.V., Brown, W.M. & Boore, J.L. (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proceedings of the National Academy of Sciences of the United States of America, 97 (25), 13738–13742. https://doi.org/10.1073/pnas.250402997
    Lewis, D.L., Farr, C.L. & Kaguni, L.S. (1995) Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect molecular biology, 4 (4), 263–278. https://doi.org/10.1111/j.1365-2583.1995.tb00032.x
    Lewis, J.G.E. (1981) The Biology of Centipedes. Cambridge University Press, Cambridge, 1–32pp.
    Li, Y.T., Xin, Z.Z., Tang, Y.Y., Yang, T.T., Tang, B.P., Sun, Y., Zhang, D.Z., Zhou, C.L., Liu, Q.N. & Yu, X.M. (2020) Comparative mitochondrial genome analyses of sesarmid and other brachyuran crabs reveal gene rearrangements and phylogeny. Frontiers in genetics, 11, 536640. https://doi.org/10.3389/fgene.2020.536640
    Mallatt, J. & Giribet, G. (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Molecular phylogenetics and evolution, 40 (3), 772–794. https://doi.org/10.1016/j.ympev.2006.04.021
    Minh, B.Q., Nguyen, M.A. & von Haeseler, A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular biology and evolution, 30 (5), 1188–1195. https://doi.org/10.1093/molbev/mst024
    Negrisolo, E., Minelli, A. & Valle, G. (2004) The mitochondrial genome of the house centipede Scutigera and the monophyly versus paraphyly of myriapods. Molecular biology and evolution, 21 (4), 770–780. https://doi.org/10.1093/molbev/msh078
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32 (1), 268–274. https://doi.org/10.1093/molbev/msu300
    Ojala, D., Montoya, J. & Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature, 290 (5806), 470–474. https://doi.org/10.1038/290470a0
    Pei, S., Ma, H., Lu, Y., Liu, H. & Liang, K. (2021). A new species of Hessebius Verhoeff, 1941 (Lithobiomorpha, Lithobiidae) from China with a key to species. Biodiversity data journal, 9, e72336. https://doi.org/10.3897/BDJ.9.e72336
    Perna, N.T. & Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of molecular evolution, 41 (3), 353–358. https://doi.org/10.1007/BF00186547
    Podsiadlowski, L., Kohlhagen, H. & Koch, M. (2007) The complete mitochondrial genome of Scutigerella causeyae (Myriapoda: Symphyla) and the phylogenetic position of Symphyla. Molecular phylogenetics and evolution, 45 (1), 251–260. https://doi.org/10.1016/j.ympev.2007.07.017
    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
    Sanger, F., Nicklen, S. & Coulson, A.R. (1992) DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology, 24, 104–108.
    Schierup, M.H. & Hein, J. (2000) Consequences of recombination on traditional phylogenetic analysis. Genetics, 156 (2), 879–891. https://doi.org/10.1093/genetics/156.2.879
    Simon, C., Buckley, T.R., Frati, F., Stewart, J.B. & Beckenbach, A.T. (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual review of ecology evolution & Systematics, 37 (1), 545–579. https://doi.org/10.1146/annurev.ecolsys.37.091305.110018
    Sun, Y., Zhu, Y., Chen, C., Zhu, Q., Zhu, Q., Zhou, Y., Zhou, X., Zhu, P., Li, J. & Zhang, H. (2020) The complete mitochondrial genome of Dysgonia stuposa (Lepidoptera: Erebidae) and phylogenetic relationships within Noctuoidea. PeerJ, 8, e8780. https://doi.org/10.7717/peerj.8780
    Verkuil, Y.I., Piersma, T. & Baker, A.J. (2010) A novel mitochondrial gene order in shorebirds (Scolopacidae, Charadriiformes). Molecular phylogenetics and evolution, 57 (1), 411–416. https://doi.org/10.1016/j.ympev.2010.06.010
    Wang, H.L., Yang, J., Boykin, L.M., Zhao, Q.Y., Li, Q., Wang, X.W. & Liu, S.S. (2013) The characteristics and expression profiles of the mitochondrial genome for the Mediterranean species of the Bemisia tabaci complex. BMC genomics, 14, 401. https://doi.org/10.1186/1471-2164-14-401
    Wang, Z.L., Li, C., Fang, W.Y. & Yu, X.P. (2016) The Complete Mitochondrial Genome of two Tetragnatha Spiders (Araneae: Tetragnathidae): Severe Truncation of tRNAs and Novel Gene Rearrangements in Araneae. International journal of biological sciences, 12 (1), 109–119. https://doi.org/10.7150/ijbs.12358
    Watanabe, Y., Suematsu, T. & Ohtsuki, T. (2014) Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Frontiers in genetics, 5, 109. https://doi.org/10.3389/fgene.2014.00109
    Wolstenholme, D.R. (1992) Animal mitochondrial DNA: structure and evolution. International review of cytology, 141 (6), 173–216. https://doi.org/10.1016/s0074-7696(08)62066-5
    Xue, X.F., Deng, W., Qu, S.X., Hong, X.Y. & Shao, R. (2018) The mitochondrial genomes of sarcoptiform mites: are any transfer RNA genes really lost?. BMC genomics, 19 (1), 466. https://doi.org/10.1186/s12864-018-4868-6
    Yang, H., Li, T., Dang, K. & Bu, W. (2018) Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera). BMC genomics, 19 (1), 264. https://doi.org/10.1186/s12864-018-4650-9
    Yuan, M.L., Zhang, Q.L., Guo, Z.L., Wang, J. & Shen, Y.Y. (2015) The Complete Mitochondrial Genome of Corizus tetraspilus (Hemiptera: Rhopalidae) and Phylogenetic Analysis of Pentatomomorpha. PLoS ONE, 10 (6), e0129003. https://doi.org/10.1371/journal.pone.0129003
    Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular ecology resources, 20 (1), 348–355. https://doi.org/10.1111/1755-0998.13096
    Zhang, D.X. & Hewitt, G.M. (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochemical systematics and ecology, 25 (2), 99–120.
    Zhang, J., Weng, Y., Ye, D., You, Y., Shi, J. & Chen, J. (2021) The complete chloroplast genome sequence of Casuarina equisetifolia. Mitochondrial DNA Part B-Resources, 6 (10), 3046–3048. https://doi.org/10.1080/23802359.2021.1967803
    Zhang, Q.L., Feng, R.Q., Li, M., Guo, Z.L., Zhang, L.J., Luo, F.Z., Cao, Y. & Yuan, M.L. (2019) The Complete Mitogenome of Pyrrhocoris tibialis (Hemiptera: Pyrrhocoridae) and Phylogenetic Implications. Genes, 10 (10), 820. https://doi.org/10.3390/genes10100820