Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-06-16
Page range: 454-468
Abstract views: 534
PDF downloaded: 30

Comparisons of two cryptic Ampedus species (Coleoptera: Elateridae) by using classical systematics, ecological niche modeling, and DNA barcoding

Hacettepe University, Faculty of Science, Department of Biology, Applied Biology Section, Ankara, Turkey. Hacettepe University, Biological Diversity Research and Application Center, Ankara, Turkey
Hacettepe University, Faculty of Science, Department of Biology, Ecology Section, Ankara, Turkey. Hacettepe University, Biological Diversity Research and Application Center, Ankara, Turkey
Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Turkey
Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Turkey
Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Turkey
Coleoptera Ampedus Cryptic species DNA barcoding Ecological Niche Modelling Elateridae Turkey


The presence of cryptic species is one of the important problems in systematics. To deal with this systematic issue, certain approaches have been utilized. DNA sequencing is one of the common techniques for estimating biodiversity, such as DNA barcoding, which might reveal cryptic species. In this study, we explore how to identify two cryptic saproxylic species using a combination of general and aedeagus morphologies, distributional patterns (in provinces and altitude), specimen abundance, ecological niche modeling (ENM), and mtDNA sequencing data (for the endemic species Ampedus platiai and A. samedovi). The close relationship and validity of these species based on classical systematics was confirmed by the available literature and by Neighbor-Joining (NJ) analysis in Mega Software. Additionally, the DNA barcoding data acquired in this study also confirmed the species status of these species  within the genus Ampedus. This also provides insights into classical systematics. ENM’s for possible current and future distributional scenarios of endemic A. platiai and A. samedovi are created by Maxent Software. Possible suitable habitats in 2050 and 2070 for the species are calculated according to IPCC5 Climate scenarios. Precipitation seasonality (coefficient of variation) has the highest percentage contribution to the resulting prediction pattern for A. platiai (52.3), the mean temperature of the wettest quarter has the highest percentage contribution to the resulting prediction pattern for A. samedovi (42.7) respectively among used bioclimatic variables in ENM. Depending on the temperature increase in 2050 and 2070, the distributions of A. platiai and A. samedovi could decrease gradually.



  1. Araújo, M.B. & Luoto, M. (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography, 16 (6), 743–753.
    Avgın, S.S., Dertli, A. & Barševskis, A. (2014) A review of Turkish saproxylic beetles from the European Red List. Annales de la Société entomologique de France, 50, 1, 13–50.
    Bełcik, M., Goczał, J. & Ciach, M. (2019) Large-scale habitat model reveals a key role of large trees and protected areas in the metapopulation survival of the saproxylic specialist Cucujus cinnaberinus. Biodiversity and Conservation, 28 (14), 3851–3871.
    Brown, J.L. (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic, and species distribution model analyses. Methods in Ecology and Evolution, 5, 694–700.
    Brown, J.L., Weber, J.J., Alvarado-Serrano, D.F., Hickerson, M.J., Franks, S.J. & Carnaval, A.C. (2016) Predicting the genetic consequences of future climate change: the power of coupling spatial demography, the coalescent, and historical landscape changes. American Journal of Botany, 103, 153–163.
    Cate, P.G. (2007) Family Elateridae. In: Löbl, I. & Smetana, A. (Eds.), Catalogue of Palaearctic Coleoptera, Vol. 4. Elateroidea - Derodontoidea - Bostrichoidea - Lymexyloidea - Cleroidea - Cucujoidea. Apollo Books, Stenstrup, 935 pp.
    Costa, G.C., Nogueira, C., Machado, R.B. & Colli, G.R. (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodiversity and Conservation, 19 (3), 883–899.
    Davis, P.H. (1965-1988) Flora of Turkey and the East Aegean Islands. Vols. 1–9. Edinburgh University Press, Edinburgh, 724 pp.
    Della Rocca, F., Bogliani, G., Breiner, F.T. & Milanesi, P. (2019) Identifying hotspots for rare species under climate change scenarios: improving saproxylic beetle conservation in Italy. Biodiversity and Conservation, 28 (2), 433–449.
    Demirsoy, A. (2002) Genel Zoocoğrafya ve Türkiye Zoocoğrafyası “Hayvan Coğrafyası”. Meteksan A. Ş. Ankara, Turkey, 1007 pp.
    Dvořák, T., Hadrava, J. & Knapp, M. (2022) The ecological niche and conservation value of Central European grassland orthopterans: A quantitative approach. Biological Conservation, 265, 109406.
    Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57.
    Feldman, R.E., Peers, M.J., Pickles, R.S., Thornton, D. & Murray, D.L. (2017) Climate driven range divergence among host species affects range-wide patterns of parasitism. Global Ecology and Conservation, 9, 1–10.
    Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.
    Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.
    Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. (2018) Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecological Modelling, 385, 124–132.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.
    Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N.G., Lehmann, A. & Zimmermann, N.E. (2006) Using niche‐based models to improve the sampling of rare species. Conservation Biology, 20 (2), 501–511.
    Gülperçin, N., Platia, G. & Tezcan, S. (2018) Some additional notes along with a new record on Elateridae (Coleoptera) fauna of Turkey. Entomofauna, 39 (2), 571–590.
    Gülperçin, N. & Tezcan, S. (2010) Türkiye Elateridae (Coleoptera) Faunasının Endemizm Yönünden Değerlendirilmesi. Biyoloji Bilimleri Araştırma Dergisi, 3, 111–113.
    Gülperçin, N. & Tezcan, S. (2015) Two new records and some adittional notes on Elateridae (Coleoptera) fauna of Turkey. Linzer biologische Beiträge, 47 (1), 545–567.
    Han, T.M., Sim, H. S., Lee, S. & Park, H.C. (2009) A new species, Agrypnus (Sabikikorius) uidoensis sp. nov. (Coleoptera, Elateridae) from the Sand Dune Shore of Ui–do Island, Korea. Zootaxa, 2134 (1), 60–68.
    Han, T., Kang, T., Jeong, J., Lee, Y., Chung, H., Park, S., Lee, S., Kim, K. & Park, H. (2012) Pseudocryptic speciation of Chrysochroa fulgidissima (Coleoptera: Buprestidae) with two new species from Korea, China and Vietnam. Zoological Journal of Linnean Society, 164, 71–98.
    Han, T., Lee, W., Lee, S., Park, I.G. & Park, H. (2016) Reassessment of Species Diversity of the Subfamily Denticollinae (Coleoptera: Elateridae) through DNA Barcoding. PLoS ONE, 11, e0148602.
    Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global change biology, 12 (12), 2272–2281.
    Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
    Kabalak, M. (2010) Systematic researches on the family Elateridae (Coleoptera) of Central Anatolian Region. Ph.D. Thesis, Hacettepe University, Ankara.
    Kabalak, M. (2020) Systematical Research on Morphology of Male Genitalia of the Family Elateridae (Coleoptera) by Using Scanning Electron Microscope. Transactions of the American Entomological Society, 146 (2), 427–457.
    Kabalak, M. & Özbek, H. (2018) Research on the Family Elateridae (Coleoptera) of Turkey: New Distributional Data, Female Descriptions and Distributional Evaluation. Transactions of the American Entomological Society, 144 (1), 143–166.
    Kabalak, M. & Sert, O. (2011a) Systematic Studies on The Male Genital Organs of Central Anatolian Elateridae (Coleoptera) Species Part I: The Subfamilies Elaterinae and Melanotinae. Hacettepe Journal of Biology and Chemistry, 39 (1), 71–82.
    Kabalak, M. & Sert, O. (2011b) Faunistic composition, ecological properties and zoogeographical composition of the family Elateridae (Coleoptera) of the Central Anatolian Region of Turkey. Journal of Insect Science, 11, 57.
    Kabalak, M. & Sert, O. (2012) Researches on three click beetles species in Turkey (Coleoptera Elateridae). Türkiye Entomoloji Dergisi, 36, 501–505.
    Kabalak, M. & Sert, O. (2013) Faunistic composition, ecological properties, and zoogeographical composition of the Elateridae (Coleoptera) family in the Western Black Sea region of Turkey. Journal of Insect Science, 13, 144.
    Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
    Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA 7: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 33, 1870–1874.
    Martín-Vélez, V. & Abellán, P. (2022) Effects of climate change on the distribution of threatened invertebrates in a Mediterranean hotspot. Insect Conservation and Diversity, 15 (3), 370–379.
    Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 1058–1069.
    Mertlik, J. & Platia, G. (2008) Catalogue of the family Cebrionidae, Elateridae, Lissomidae, Melasidae and Throscidae (Coleoptera) from Turkey. Elateridarium, 2, 1–40.
    Oettel, J., Lapin, K., Kindermann, G., Steiner, H., Schweinzer, K.M., Frank, G. & Essl, F. (2020) Patterns and drivers of deadwood volume and composition in different forest types of the Austrian natural forest reserves. Forest Ecology and Management, 463, 118016.
    Papeş, M. & Gaubert, P. (2007) Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and distributions, 13 (6), 890–902.
    Phillips, S.J. & Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31 (2), 161–175.
    Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.
    Platia, G. (1994) Fauna d′Italia, Coleoptera Elateridae. Edizioni Calderini, Bologna, 429 pp.
    Platia, G. (2016) New Species and New Records of Click Beetles from the Palearctic Region (Coleoptera, Elateridae). Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), 58, 63–74.
    Platia, G. (2017) New species and new records of click beetles from the Palearctic region (Coleoptera, Elateridae). Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), 60, 55–61.
    Platia, G., Jansson, N., Avcı, M., Sarıkaya, O., Coşkun, M. & Kayış, T. (2011) New species of click beetles from Turkey (Coleoptera, Elateridae). Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), 48, 207–215.
    Platia, G., Jansson, N., Sürgüt, H., Tüven, A., Avcı, M. & Varlı, S.V. (2018) Click beetles (Coleoptera, Elateridae) from two areas with hollow oaks and plane trees in Turkey. Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), 63, 253–257.
    Platia, G., Pulvirenti, E. & Ruzzante, G. (2020) New species and new records of click beetles from the palearctic region (Coleoptera, Elateridae). Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), 66, 19–32.
    Saitou, N. & Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
    Schimmel, R. (1990) Neue Schnellkäfer, sowie Bemerkungen über bekannte Arten dieser Familie aus der Türkei, aus Spanien und aus Deutschland (Coleoptera, Elateridae). Entomologische Blätter für Biologie und Systematik der Käfer, 86, 71–84.
    Seibold, S., Rammer, W., Hothorn, T., Seidl, R., Ulyshen, M.D., Lorz, J. & Müller, J. (2021) The contribution of insects to global forest deadwood decomposition. Nature, 597, 77–81.
    Şenkul, C. & Doğan, U. (2013) Vegetation and climate of Anatolia and adjacent regions during the last glacial period. Quaternary International, 302, 110–122.
    Sert, O. & Kabalak, M. (2011) Faunistic, Ecological and Zoogeographical Evaluations on the Click-Beetles (Coleoptera: Elateridae) of Middle Part of the Black Sea Region of Turkey. Annales de la Socieìteì entomologique de France, 47, 501–509.
    Yi, Y.J., Cheng, X., Yang, Z.F. & Zhang, S.H. (2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 92, 260–269.