Skip to main content Skip to main navigation menu Skip to site footer
Monograph
Published: 2021-12-08

Thirteen new species of Chilecicada Sanborn, 2014 (Hemiptera: Auchenorrhyncha: Cicadidae: Tibicininae) expand the highly endemic cicada fauna of Chile

Department of Biology, Barry University, 11300 NE Second Avenue, Miami Shores, FL 33161–6695, USA
Natural Sciences Division, Pasadena City College, 1570 East Colorado Boulevard, Pasadena, CA 91106, USA, Entomology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
Department of Ecological Sciences, Science Faculty, University of Chile, 7800003 Santiago, Chile
Natural Sciences Division, Pasadena City College, 1570 East Colorado Boulevard, Pasadena, CA 91106, USA
Natural Sciences Division, Pasadena City College, 1570 East Colorado Boulevard, Pasadena, CA 91106, USA
Entomology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Hemiptera taxonomy new species acoustic signals cytochrome oxidase biogeography biodiversity

Abstract

The genus Chilecicada Sanborn, 2014 is shown to be a complex of closely related species rather than a monospecific genus. Chilecicada citatatemporaria Sanborn & Cole n. sp., C. culenesensis Sanborn & Cole n. sp., C. curacaviensis Sanborn & Cole n. sp., C. impartemporaria Sanborn & Cole n. sp., C. magna Sanborn & Cole n. sp., C. mapuchensis Sanborn n. sp., C. oraria Sanborn & Cole n. sp., C. parrajaraorum Sanborn n. sp., C. partemporaria Sanborn & Cole n. sp., C. pehuenchesensis Sanborn & Cole n. sp., C. trifascia Sanborn n. sp., C. trifasciunca Sanborn & Cole n. sp., and C. viridicitata Sanborn & Cole n. sp. are described as new. Chilecicada occidentis Walker, 1850 is re-described to facilitate separation of the new species from the only previously known species. Song and cytochrome oxidase I analysis available for most species support the separation of the new taxa from the type species of the genus. Known species distributions and a key to the species of the genus are also provided. The new species increases the known cicada diversity 61.9% to 34 species, 91.2% of which are endemic to Chile.

References

  1. Alexander, R.D. (1962a) Evolutionary change in cricket acoustical communication. Evolution, 16, 443–467.  https://doi.org/10.1111/j.1558-5646.1962.tb03236.x

    DOI: https://doi.org/10.1111/j.1558-5646.1962.tb03236.x
  2. Alexander, R.D. (1962b) The role of behavioral study in cricket classification. Systematic Zoology, 11, 53–72.

    DOI: https://doi.org/10.2307/2411453
  3. Araya‐Salas, M. & Smith‐Vidaurre, G. (2017) warbleR: an R package to streamline analysis of animal acoustic signals. In: Golding, N. (Ed.), Methods in Ecology and Evolution, 8, pp. 184–191.  https://doi.org/10.1111/2041-210X.12624

    DOI: https://doi.org/10.1111/2041-210X.12624
  4. Arensburger, P., Buckley, T.R., Simon, C., Moulds, M., & Holsinger, K.E. (2004) Biogeography and phylogeny of the New Zealand cicada genera (Hemiptera: Cicadidae) based on nuclear and mitochondrial DNA data. Journal of Biogeography, 31, 557–569.  https://doi.org/10.1046/j.1365-2699.2003.01012.x

    DOI: https://doi.org/10.1046/j.1365-2699.2003.01012.x
  5. Baker, E. & Chesmore, D. (2020) Standardisation of bioacoustic terminology for insects. Biodiversity Data Journal, 8 (e54222), 1–32.  https://doi.org/10.3897/BDJ.8.e54222

    DOI: https://doi.org/10.3897/BDJ.8.e54222
  6. Banker, S.E., Wade, E.J. & Simon, C. (2017) The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Molecular Phylogenetics and Evolution, 116, 172–181.  https://doi.org/10.1016/j.ympev.2017.08.009

    DOI: https://doi.org/10.1016/j.ympev.2017.08.009
  7. Bator, J., Marshall, D.C., Hill, K.B.R., Cooley, J.R., Leston, A., & Simon, C. (2021) Phylogeography of the endemic red-tailed cicadas of New Zealand (Hemiptera: Cicadidae: Rhodopsalta), and molecular, morphological and bioacoustical confirmation of the existence of Hudson’s Rhodopsalta microdon. Biological Journal of the Linnean Society, zlab065, 1–26. https://doi.org/10.1093/zoolinneab/zlab065

    DOI: https://doi.org/10.1093/zoolinnean/zlab065
  8. Buckley, T.R., Cordeiro, M., Marshall, D.C. & Simon, C. (2006) Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Systematic Biology, 55, 411–425. https://doi.org/10.1080/10635150600697283

    DOI: https://doi.org/10.1080/10635150600697283
  9. Chatfield-Taylor, W. & Cole, J.A. (2019) Noisy neighbours among the selfish herd: a critical song distance mediates mate recognition within cicada emergences (Hemiptera: Cicadidae). Biological Journal of the Linnean Society, 128, 854–864. https://doi.org/10.1093/biolinnean/blz132

    DOI: https://doi.org/10.1093/biolinnean/blz132
  10. Cole, J.A. & Chiang, B.H. (2016) The Nearctic Nedubini: the most basal lineage of katydids is resolved among the paraphyletic “Tettigoniinae” (Orthoptera: Tettigoniidae). Annals of the Entomological Society of America, 109, 652–662. https://doi.org/10.1093/aesa/saw030

    DOI: https://doi.org/10.1093/aesa/saw030
  11. Cooley, J.R. & Marshall, D. (2001) Sexual signaling in periodical cicadas, Magicicada spp. (Hemiptera: Cicadidae). Behaviour, 138, 827–855. https://doi.org/10.1163/156853901753172674

    DOI: https://doi.org/10.1163/156853901753172674
  12. Coyne, J.A. & Orr, H.A. (2004) Speciation. Sinauer Associates, Sunderland, xiii + 546 p.

  13. Distant, W.L. (1905) Rhynchotal notes XXX. Annals and Magazine of Natural History, Series 7, 15, 304–319.  https://doi.org/10.1080/03745480509443047

    DOI: https://doi.org/10.1080/03745480509443047
  14. Ellis, E.A., Marshall, D.C., Hill, K.B., Owen, C.L., Kamp, P.J. & Simon, C. (2015) Phylogeography of six codistributed New Zealand cicadas and their relationship to multiple biogeographical boundaries suggest a re-evaluation of the Taupo Line. Journal of Biogeography, 42, 1761–1775.  https://doi.org/10.1111/jbi.12532

    DOI: https://doi.org/10.1111/jbi.12532
  15. Folmer, O., Black, M., Hoeh, W. & Vrijenjoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

  16. Fonseca, P.J. & Revez, M.A. (2002) Song discrimination by male cicadas Cicada barbara lusitanica (Homoptera, Cicadidae). Journal of Experimental Biology, 205, 1285–1292.  https://doi.org/10.1242/jeb.205.9.1285

    DOI: https://doi.org/10.1242/jeb.205.9.1285
  17. Galliart, P.L. & Shaw, K.C. (1996) The effect of variation in parameters of the male calling song of the katydid, Amblycorypha parvipennis (Orthoptera: Tettigoniidae), on female phonotaxis and phonoresponse. Journal of Insect Behavior, 9, 841–855. https://doi.org/10.1007/bf02208973

    DOI: https://doi.org/10.1007/BF02208973
  18. Gogala, M., Drosopoulos, S. & Trilar, T. (2008) Cicadetta montana complex (Hemiptera, Cicadidae) in Greece - a new species and new records based on bioacoustics. Mitteilungen aus dem Museum für Naturkunde im Berlin, Deutsche Entomologishe Zeitschrift, 55, 91–100.  https://doi.org/10.1002/mmnd.200800006

    DOI: https://doi.org/10.1002/mmnd.200800006
  19. Gogala, M., Drosopoulos, S. & Trilar, T. (2009) Two mountains, two species: new taxa of the Cicadetta montana species complex in Greece (Hemiptera: Cicadidae). Acta Entomologica Slovenica, 17, 13–28.  https://doi.org/10.1002/mmnd.200800006

  20. Gogala, M., Popov, A.V. & Ribaric, D. (1996) Bioacoustics of singing cicadas of the western Palaearctic: Cicadetta tibialis (Panzer)(Cicadoidea: Tibicinidae). Acta Entomologica Slovenica, 4, 45–62.

  21. Greenfield, M.D. & Roizen, I. (1993) Katydid synchronous chorusing is an evolutionarily stable outcome of female choice. Nature, 364, 618–620. https://doi.org/10.1038/364618a0

    DOI: https://doi.org/10.1038/364618a0
  22. Heath, J.E. & Wilkin, P.J. (1970) Temperature responses of the desert cicada, Diceroprocta apache (Homoptera: Cicadidae). Physiological Zoology, 43, 145. https://doi.org/10.1086/physzool.43.3.30155525

    DOI: https://doi.org/10.1086/physzool.43.3.30155525
  23. Hedrick, A.V. (1986) Female preference for male calling bout duration in a field cricket. Behavioral Ecology and Sociobiology, 19, 73–77.  https://doi.org/10.1007/bf00303845

    DOI: https://doi.org/10.1007/BF00303845
  24. Hedrick, A.V. (1999) Crickets with extravagant mating songs compensate for predation risk with extra caution. Proceedings of the Royal Society of London, Series B, 267, 671–675.  https://doi.org/10.1098/rspb.2000.1054

    DOI: https://doi.org/10.1098/rspb.2000.1054
  25. Hertach, T. (2007) Three species instead of only one: distribution and ecology of the Cicadetta montana species complex (Hemiptera: Cicadoidea) in Switzerland. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 80, 37–61.

  26. Hill, K.B.R., Marshall, D.C., Moulds, M.S. & Simon, C. (2015) Molecular phylogenetics, diversification, and systematics of Tibicen Latreille 1825 and allied cicadas of the tribe Cryptotympanini, with three new genera and emphasis on species from the USA and Canada (Hemiptera: Auchenorrhyncha: Cicadidae). Zootaxa, 3985 (2), 219. https://doi.org/10.11646/zootaxa.3985.2.3

    DOI: https://doi.org/10.11646/zootaxa.3985.2.3
  27. Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.  https://doi.org/10.1093/bioinformatics/17.8.754

    DOI: https://doi.org/10.1093/bioinformatics/17.8.754
  28. Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701. https://doi.org/10.1093/molbev/mss020

    DOI: https://doi.org/10.1093/molbev/mss020
  29. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analysis. Molecular Biology and Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260

    DOI: https://doi.org/10.1093/molbev/msw260
  30. Latreille, P.A. (1802) s.n. In: Histoire naturelle, générale et particulière des crustacés et des insectes. Ouvrage faisant suite à l’histoire naturelle générale et particulière, composée par Leclerc de Buffon, et rédigée par C.S. Sonnini, member de plusierus sociétés savantes. Familles naturelles des genres. F. Dufast, Paris, pp. i–xii + 13–467.

    DOI: https://doi.org/10.5962/bhl.title.15764
  31. Maddison, W.P. & Maddison, D.R. (2015) Mesquite: a modular system for evolutionary analysis. Version 3.04. Available from: http://mesquiteproject.org (accessed 8 November 2021)

  32. Marshall, D.C. & Hill, K.B.R. (2009) Versatile aggressive mimicry of cicadas by an Australian predatory katydid. PLoS One, 4, 1–8. https://doi.org/10.1371/journal.pone.0004185

    DOI: https://doi.org/10.1371/journal.pone.0004185
  33. Marshall, D.C., Hill, K.B.R., Cooley, J.R. & Simon, C. (2011) Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: lessons from New Zealand cicadas (genus Kikihia). Systematic Biology, 60, 482–502. https://doi.org/10.1093/sysbio/syr017

    DOI: https://doi.org/10.1093/sysbio/syr017
  34. Marshall, D.C., Moulds, M., Hill, K.B.R., Price, B.W., Wade, E.J., Owen, C.L., Goemans, G., Marathe, K., Sarkar, V., Cooley, J.R., Sanborn, A.F., Kunte, K., Villet, M.H. & Simon, C. (2018) A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily classification. Zootaxa, 4424 (1), 1–64. https://doi.org/10.11646/zootaxa.4424.1.1

    DOI: https://doi.org/10.11646/zootaxa.4424.1.1
  35. Maya-Lastra, C.A. (2020) TreeToM, simple tool for visualizing phylogenetic trees onto a map. Available from: https://camayal.info/wa/treetom/ (accessed 1 November 2021)

  36. Miller, M., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. IEEE, Proceedings of the 2010 Gateway Computing Environemnts Workshop, New Orleans, Louisiana, 8 pp.

    DOI: https://doi.org/10.1109/GCE.2010.5676129
  37. Moulds, M.S. (2005) An appraisal of the higher classification of cicadas (Hemiptera: Cicadoidea) with special reference to the Australian fauna. Records of the Australian Museum, 57, 375–446.  https://doi.org/10.3853/j.0067-1975.57.2005.1447

    DOI: https://doi.org/10.3853/j.0067-1975.57.2005.1447
  38. Moulds, M.S. (2012) A review of the genera of Australian cicada (Hemiptera: Cicadoidea). Zootaxa, 3287 (1), 1–262.  https://doi.org/10.11646/zootaxa.3287.1.1

    DOI: https://doi.org/10.11646/zootaxa.3287.1.1
  39. Otte, D. (1970) A comparative study of communicative behavior in grasshoppers. Miscellaneous Publications, Museum of Zoology, University of Michigan, 141, 1–168.

  40. Popov, A.V. (1975) The structure of the tymbals and the characteristics of the sound signals in singing cicadas (Homoptera, Cicadidae) in the southern regions of the USSR. Entomological Review, Washington, 54, 7–35.

  41. Popov, A.V., Beganovic, A. & Gogala, M. (1997) Bioacoustics of singing cicadas of the western Palaearctic: Tettigetta brullei (Fieber 1876) (Cicadoidea: Tibicinidae). Acta Entomologica Slovenica, 5, 89–101.

  42. Quartau, J.A., Seabra, S. & Sanborn, A. (2000) Effect of ambient air temperature on some temporal parameters of the calling song of Cicada orni Linnaeus, 1758 (Hemiptera: Cicadidae) in Portugal. Acta Zoologica Cracoviensia, 43, 193–198.

  43. Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.  https://doi.org/10.1093/bioinformatics/btg180

    DOI: https://doi.org/10.1093/bioinformatics/btg180
  44. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.  https://doi.org/10.1093/sysbio/sys029

    DOI: https://doi.org/10.1093/sysbio/sys029
  45. Sanborn, A.F. (2002) Cicada thermoregulation (Hemiptera, Cicadoidea). Denisia, 4, 455–470.

  46. Sanborn, A.F. (2005) Acoustic signals and temperature. In: Drosopoulos, S. & Claridge, M.F. (Eds.), Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, Florida, pp. 111–125. https://doi.org/10.1201/9781420039337.ch7

    DOI: https://doi.org/10.1201/9781420039337.ch7
  47. Sanborn, A.F. (2014) A new genus and a new tribe of cicada from South America (Hemiptera: Cicadoidea: Cicadidae) with a note on the taxonomic position of Ahomana Distant, 1905. Proceedings of the Entomological Society of Washington, 116, 339–348.  https://doi.org/10.4289/0013-8797.116.3.339

    DOI: https://doi.org/10.4289/0013-8797.116.3.339
  48. Sanborn, A.F. (2021) A new species, genus and tribe of cicada (Hemiptera: Cicadoidea: Cicadidae: Tibicininae) from Chile with a list of Chilean cicada fauna. Zootaxa, 4952 (1), 87–100.  https://doi.org/10.11646/zootaxa.4952.1.5

    DOI: https://doi.org/10.11646/zootaxa.4952.1.5
  49. Sanborn, A.F., Heath, J.E. & Heath, M.S. (1992) Thermoregulation and evaporative cooling in the cicada Okanagodes gracilis (Homoptera: Cicadidae). Comparative Biochemistry and Physiology A: Physiology, 102, 751–757. https://doi.org/10.1016/0300-9629(92)90736-a

    DOI: https://doi.org/10.1016/0300-9629(92)90736-A
  50. Sanborn, A.F., Noriega, F.G. & Phillips, P.K. (2002) Thermoregulation in the cicada Platypedia putnami var. lutea with a test of a crepitation hypothesis. Journal of Thermal Biology, 27, 365–369.  https://doi.org/10.1016/s0306-4565(02)00004-9

    DOI: https://doi.org/10.1016/S0306-4565(02)00004-9
  51. Sanborn, A.F., Simões, P.C., Phillips, P.K. & J.A. Quartau, J.A. (2011) Thermoregulation and the influence of body temperature on calling song parameters in Cicada orni (Hemiptera: Cicadidae). European Journal of Entomology, 108, 365–369. https://doi.org/10.14411/eje.2011.045

    DOI: https://doi.org/10.14411/eje.2011.045
  52. Scopoli, J.A. (1772) Observations zoologicae. Annus Historico-Naturalis, 5, 70–128.

  53. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.  https://doi.org/10.1093/aesa/87.6.651

    DOI: https://doi.org/10.1093/aesa/87.6.651
  54. Simon, C., Gordon, E.R.L., Moulds, M.S., Cole, J.A., Haji, D., Lemmon, A.R., Lemmon, E.M., Kortyna, M., Nazario, K., Wade, E.J., Meister, R.C., Goemans, G., Chiswell, S.M., Pessacq, P., Veloso, C., McCutcheon, J.P. & Łukasik, P. (2019) Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biological Journal of the Linnean Society, 128, 865–886. https://doi.org/10.1093/biolinnean/blz120

    DOI: https://doi.org/10.1093/biolinnean/blz120
  55. Sokal, R.R. & Rohlf, F.J. (2000) Biometry. 3rd Edition. W.H. Freeman and Company, New York, xx + 887 pp.

  56. Sueur, J. & Puissant, S. (2007) Similar look but different song: a new Cicadetta species in the montana complex (Insecta, Hemiptera, Cicadidae). Zootaxa, 1442 (1), 55–68. https://doi.org/10.11646/zootaxa.1442.1.5

    DOI: https://doi.org/10.11646/zootaxa.1442.1.5
  57. Villet, M.H., Sanborn, A.F. & Phillips, P.K. (2003) Endothermy and chorusing behaviour in the African platypleurine cicada Pycna semiclara (Hemiptera: Cicadidae). Canadian Journal of Zoology, 81, 1437–1444.  https://doi.org/10.1139/z03-119

    DOI: https://doi.org/10.1139/z03-119
  58. Wade, E.J., Hertach, T., Gogala, M., Trilar, T. & Simon, C. (2015) Molecular species-delimitation methods recover most song-delimited cicada species in the European Cicadetta montana complex. Journal of Evolutionary Biology, 28, 2318–2336. https://doi.org/10.1111/jeb.12756

    DOI: https://doi.org/10.1111/jeb.12756
  59. Walker, F. (1850) 1 List of the specimens of homopterous insects in the collection of the British Museum. British Museum Trustees, London, 260 pp. https://doi.org/10.5962/bhl.title.9063

  60. Walker, T.J. (1962) Factors responsible for intraspecific variation in the calling songs of crickets. Evolution, 16, 407–428.  https://doi.org/10.1111/j.1558-5646.1962.tb03234.x

    DOI: https://doi.org/10.1111/j.1558-5646.1962.tb03234.x
  61. Walker, T.J. (1975) Effects of temperature on rates of poikilotherm nervous systems: evidence from the calling songs of meadow katydids (Orthoptera: Tettigoniidae: Orchelimum) and reanalysis of published data. Journal of Comparative Physiology, 101, 57–69.  https://doi.org/10.1007/bf00660119

    DOI: https://doi.org/10.1007/BF00660119