Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2021-08-31

Is it time to describe new species without diagnoses?—A comment on Sharkey et al. (2021)

Zoological Research Museum Alexander Koenig, Bonn, Germany
Australian Museum Research Institute, Sydney, Australia, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia
Viale Venezia 45, Brescia, Italy
Department of Life Sciences, Natural History Museum, London, UK
Paris-Lodron-University, Hellbrunner Straße 34, 5020 Salzburg, Austria
Zoological Research Museum Alexander Koenig, Bonn, Germany
Zoological Research Museum Alexander Koenig, Bonn, Germany
Zoological Research Museum Alexander Koenig, Bonn, Germany
Zoological Research Museum Alexander Koenig, Bonn, Germany. Museu Nacional—Universidade Federal do Rio de Janeiro, Brazil
Zoological Research Museum Alexander Koenig, Bonn, Germany.
Zoological Research Museum Alexander Koenig, Bonn, Germany
niversidade Federal de Mato Grosso, Cuiaba, Brazil
Zoological Research Museum Alexander Koenig, Bonn, Germany
Department of Zoology, Denver Museum of Nature & Science, Colorado, U.S.A.
General Taxonomy species delimitation COI barcoding nomenclature rules

Abstract

New methods in taxonomy and systematics can influence the overall practice of formally naming and describing biodiversity. DNA barcoding has been controversial since its emergence, but now, large scale species descriptions exclusively based on barcodes have created what can be called a ‘new quality of performance’. Its limitations are discussed from different perspectives: nomenclature, general pragmatism, and problems of DNA-based species delimitation in the light of the central aim of achieving a robust and stable nomenclature of organisms, essential for all applications of biodiversity research. This issue needs to be addressed to prevent restraining the progress of taxonomy and its ability to contribute to modern science.

 

References

  1. Ahrens, D., Monaghan, M.T. & Vogler, A.P. (2007) DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). Molecular Phylogeneny and Evolution, 44, 436–449. https://doi.org/10.1016/j.ympev.2007.02.024
    Ahrens, D., Fabrizi, S., Sipek, P. & Lago, P. (2013) Integrative analysis of DNA phylogeography and morphology of the European rose chafer (Cetonia aurata) to infer species taxonomy and patterns of postglacial colonisation in Europe. Molecular Phylogeneny and Evolution, 69, 83–94. https://doi.org/10.1016/j.ympev.2013.05.016
    Ahrens, D., Fujisawa, T., Krammer, H.-J., Eberle, J., Fabrizi, S. & Vogler, A.P. (2016) Rarity and incomplete sampling in DNA-based species delimitation. Systematic Biology, 65, 478–494. https://doi.org/10.1093/sysbio/syw002
    Amorim, D.S., Santos, C.M.D., Krell, F.-T., Dubois, A., Nihei, S.S., Oliveira, O.M.P., Pont, A., Song, H., Verdade, V.K., Fachin, D.A., Klassa, B., Lamas, C.J.E., Oliveira, S.S., Carvalho, C.J.B. de, Mello-Patiu, C.A., Hajdu, E., Couri, M.S., Silva, V.C., Capellari, R.S., Falaschi, R.L., Feitosa, R.M., Prendini, L., Pombal Jr., J.P., Fernández, F., Rocha, R.M., Lattke, J.E., Caramaschi, U., Duarte, M., Marques, A.C., Reis, R.E., Kurina, O., Takiya, D.M., Tavares. M., Fernandes, D.S., Franco, F.L., Cuezzo, F., Paulson, D., Guénard, B., Schlick-Steiner, B.C., Arthofer, W., Steiner, F.M., Fisher, B.L., Johnson, R.A., Delsinne, T.D., Donoso, D.A., Mulieri, P.R., Patitucci, L.D., Carpenter, J.M., Herman, L. & Grimaldi, D. (2016) Timeless standards for species delimitation. Zootaxa, 4137 (1), 121–128. https://doi.org/10.11646/zootaxa.4137.1.9
    Ballard, J.W. & Whitlock, M.C. (2004) The incomplete natural history of mitochondria. Molecular Ecology, 13, 729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x
    Bergsten, J., Bilton, D.T., Fujisawa, T., Elliott, M., Monaghan, M.T., Balke, M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G.N., Ribera, I., Nilsson, A.N., Barraclough, T.G. & Vogler, A.P. (2012) The effect of geographical scale of sampling on DNA barcoding. Systematic Biology, 61, 851–869. https://doi.org/10.1093/sysbio/sys037
    Birky, C.W., Fuerst, P. & Maruyama, T. (1989) Organelle gene diversity under migration, mutation and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121, 613–627. https://doi.org/10.1093/genetics/121.3.613
    Blaxter, M. (2016) Imagining Sisyphus happy: DNA barcoding and the unnamed majority. Philosophical Transactions of the Royal Society B, 371, 20150329. https://doi.org/10.1098/rstb.2015.0329
    Brower, A.V.Z. (2006) Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Systematics and Biodiversity, 4 (2), 127–132. https://doi.org/10.1017/S147720000500191X
    Brower, A.V.Z. (2010) Alleviating the taxonomic impediment of DNA barcoding and setting a bad precedent: names for ten species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based diagnoses. Systematics and Biodiversity, 8, 485–491. https://doi.org/10.1080/14772000.2010.534512
    Burns, J.M., Janzen, D.H., Hajibabaei, M., Hallwachs, W. & Hebert, P.D.N. (2008) DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste, Costa Rica. Proceedings of the National Academy of Sciences of the United States of America, 105, 6350–6355. https://doi.org/10.1073/pnas.0712181105
    Carstens, B.C., Pelletier, T.A., Reid, N.M. & Satler, J.D. (2013) How to fail at species delimitation. Molecular Ecology, 22, 4369–4383. https://doi.org/10.1111/mec.12413
    Cellinese, N., Conix, S. & Lapp, H. (2021) Phyloreferences: Tree-Native, Reproducible, and Machine-Interpretable Taxon Concepts. Available from; https://doi.org/10.32942/osf.io/57yjs (accessed 5 March 2021)
    Ceríaco, L.M.P., Gutiérrez, E.E. & Dubois, A. (2016) Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences. Zootaxa, 4196 (3), 435–445. https://doi.org/10.11646/zootaxa.4196.3.9
    Conix, S. (2018) Integrative taxonomy and the operationalization of evolutionary independence. European Journal for Philosophy of Science, 8, 587–603. https://doi.org/10.1007/s13194-018-0202-z
    De Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56 (6), 879–886. https://doi.org/10.1080/10635150701701083
    Derkarabetian, S., Castillo, S., Koo, P.K., Ovchinnikov, S. & Hedin, M. (2019) A demonstration of unsupervised machine learning in species delimitation. Molecular Phylogeneny and Evolution, 139, 106562. https://doi.org/10.1016/j.ympev.2019.106562
    Dietz, L., Eberle, J., Mayer, C., Kukowka, S., Bohacz, C., Baur, H., Espeland, M., Huber, B.A., Hutter, C., Mengual, X., Peters, R.S., Vences, M., Wesener, T., Willmott, K., Misof, B., Niehuis, O. & Ahrens, D. (2021) Standardized nuclear markers advance metazoan taxonomy. bioRxiv. [published online] https://doi.org/10.1101/2021.05.07.443120
    Dupérré, N. (2020) Old and new challenges in taxonomy: what are taxonomists up against? Megataxa, 1 (1), 59–62. https://doi.org/10.11646/megataxa.1.1.12
    Doerder, F.P. (2019) Barcodes reveal 48 new species of Tetrahymena, Dexiostoma, and Glaucoma: phylogeny, ecology, and biogeography of new and established species. Journal of Eukaryotic Microbiology, 66, 182–208. https://doi.org/10.1111/jeu.12642
    Eberle, J., Warnock, R.C.M. & Ahrens, D. (2016) Bayesian species delimitation in Pleophylla chafers (Coleoptera)—the importance of prior choice and morphology. BMC Ecology and Evolution, 16, 94. https://doi.org/10.1186/s12862-016-0659-3
    Eberle, J., Fabrizi, S., Bazzato, E., Rossi, M., Stella Columba, M., Cillo, D., Uliana, M., Sparacio, I., Sabatinelli, G., Warnock, R.C.M., Carpaneto, G.M. & Ahrens, D. (2019) Sex-biased dispersal obscures species boundaries in integrative species delimitation approaches. Systematic Biology, 68, 441–459. https://doi.org/10.1093/sysbio/syy072
    Eberle, J., Ahrens, D., Mayer, C., Niehuis, O. & Misof, B. (2020) A plea for implementing a standardized set of nuclear markers in DNA taxonomy. Trends in Ecology and Evolution, 35 (4), 336–345. https://doi.org/10.1016/j.tree.2019.12.003
    Esselstyn, J.A., Evans, B.J., Sedlock, J.L., Khan, F.A.A. & Heaney, L.R. (2012) Single-locus species delimitation: a test of the mixed Yule–coalescent model, with an empirical application to Philippine round-leaf bats. Proceedings of the Royal Society B, 279, 3678–3686. https://doi.org/10.1098/rspb.2012.0705
    Fujisawa, T. & Barraclough, T. (2013) Delimiting species using the Generalized Mixed Yule Coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology, 62, 707–724. https://doi.org/10.1093/sysbio/syt033
    Funk, D.J. & Omland, K.E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34, 397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
    Garnett, S.T., Christidis, L., Conix, S., Costello, M.J., Zachos, F.E., Bánki, O.S., Bao, Y., Barik, S.K., Buckeridge, J.S., Hobern, D., Lien, A., Montgomery, N., Nikolaeva, S., Pyle, R.L., Thomson, S.A., van Dijk, P.P., Whalen, A., Zhang, Z.-Q. &Thiele, K.R. (2020) Principles for creating a single authoritative list of the world’s species. PLoS Biology, 18 (7), e3000736. https://doi.org/10.1371/journal.pbio.3000736
    Gerovichev, A., Sadeh, A., Winter, V., Bar-Massada, A., Keasar, T. & Keasar, C. (2021) High throughput data acquisition and deep learning for insect ecoinformatics. Frontiers in Ecology and Evolution, 9, 1–11. https://doi.org/10.3389/fevo.2021.600931
    Halt, M.N., Kupriyanova, E.K., Cooper, S.J.B. & Rouse, G.W. (2009) Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebrate Systematics, 23, 205–222. https://doi.org/10.1071/IS09003
    Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA Barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101 (41), 14812–14817. https://doi.org/10.1073/pnas.0406166101
    Høye, T.T., Ärje, J., Bjerge, K., Hansen, O.L.P., Iosifidis, A., Leese, F., Mann, H.M.R., Meissner, K., Melvad, C. & Raitoharju, J. (2021) Deep learning and computer vision will transform entomology. Proceedings of the National Academy of Sciences of the United States of America, 118, e2002545117. https://doi.org/10.1073/pnas.2002545117
    Hongsanan, S., Jeewon, R., Purahong, W., Xie, N., Liu, J.-K., Jayawardena, R.S., Ekanayaka, A.H., Dissanayake, A., Raspé, O., Hyde, K.D., Stadler, M. & Peršoh, D. (2018) Can we use environmental DNA as holotypes? Fungal Diversity, 92, 1–30. https://doi.org/10.1007/s13225-018-0404-x
    ICZN (1999) International Code of Zoological Nomenclature. 4th Edition. International Trust for Zoological Nomenclature, London, XXIX + 306 pp.
    ICZN (2017) Declaration 45—Addition of Recommendations to Article 73 and of the term “specimen, preserved” to the Glossary. The Bulletin of Zoological Nomenclature, 73, 96–97. https://doi.org/10.21805/bzn.v73i2.a2
    IUCN (2020) The IUCN Red List of Threatened Species. Version 2020-3. Summary statistics. Available from: https://www.iucnredlist.org (accessed 11 February 2021)
    Kennedy, J.B., Kukla, R. & Paterson, T. (2005) Scientific names are ambiguous as identifiers for biological taxa: their context and definition are required for accurate data integration. In: Ludäscher, B. & Raschid, L. (Eds.), Data integration in the life sciences. DILS 2005. Lecture Notes in Computer Science. Vol. 3615. Springer, Berlin and Heidelberg, pp. 80–95. https://doi.org/10.1007/11530084_8
    Klasen, M., Ahrens, D., Eberle, J. & Steinhage, V. (2021) Image-based automated species identification: Can virtual data augmentation overcome problems of insufficient sampling? Systematic Biology. [published online] https://doi.org/10.1093/sysbio/syab048
    Klopfstein, S., Kropf, C. & Baur, H. (2016) Wolbachia endosymbionts distort DNA barcoding in the parasitoid wasp genus Diplazon (Hymenoptera: Ichneumonidae). Zoological Journal of the Linnean Society, 177, 541–557. https://doi.org/10.1111/zoj.12380
    Krell, F.-T. & Marshall, S.A. (2017) New species described from photographs: Yes? No? Sometimes? A fierce debate and a new Declaration of the ICZN. Insect Systematics and Diversity, 1, 3–19. https://doi.org/10.1093/isd/ixx004
    Meyer, C.P. & Paulay, G. (2005) DNA Barcoding: error rates based on comprehensive sampling. PLoS Biology, 3 (12), e422.
    Meier, R., Blaimer, B., Buenaventura, E., Hartop, E., von Rintelen, T., Srivathsan, A. & Yeo, D. (2021) A re-analysis of the data in Sharkey et al.’s (2021) minimalist revision reveals that BINs do not deserve names, but BOLD Systems needs a stronger commitment to open science. bioRxiv. [published online] https://doi.org/10.1101/2021.04.28.441626
    Meierotto, S., Sharkey, M.J., Janzen, D.H., Hallwachs, W., Hebert, P.D.N., Chapman, E.G. & Smith, M.A. (2019) A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment. Deutsche Entomologische Zeitschrift, 66 (2), 119–145. https://doi.org/10.3897/dez.66.34683
    Miralles, A., Bruy, T., Wolcott, K., Scherz, M.D., Begerow, D., Beszteri, B., Bonkowski, M., Felden, J., Gemeinholzer, B., Glaw, F., Glöckner, F.O., Hawlitschek, O., Kostadinov, I., Nattkemper, T.W., Printzen, C., Renz, J., Rybalka, N., Stadler, M., Weibulat, T., Wilke, T., Renner, S.S. & Vences, M. (2020) Repositories for taxonomic data: Where we are and what is missing. Systematic Biology, 69, 1231–1253. https://doi.org/10.1093/sysbio/syaa026
    Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7, 16. https://doi.org/10.1186/1742-9994-7-16
    Palumbi, S.R., Cipriano, F. & Hare, M.P. (2001) Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution, 55 (5), 859–868. https://doi.org/10.1554/0014-3820(2001)055[0859:PNGCFM]2.0.CO;2
    Pennisi, E. (2019) DNA barcodes jump-start search for new species. Science, 364 (6444), 920–921. https://doi.org/10.1126/science.364.6444.920
    Petit, R.J. & Excoffier, L. (2009) Gene flow and species delimitation. Trends in Ecology and Evolution, 24, 386–393. https://doi.org/10.1016/j.tree.2009.02.011
    Pfeiler, E., Van der Heiden, A.M., Ruboyianes, R.S. & Watts, T. (2011) Albula gilberti, a new species of bonefish (Albuliformes: Albulidae) from the eastern Pacific, and a description of adults of the parapatric A. esuncula. Zootaxa, 3088 (1), 1–14. https://doi.org/10.11646/zootaxa.3088.1.1
    Pfeiler, E. & Nazario-Yepiz, N.O. (2020) DNA-based taxonomy and potential suppression of long-established names: the case of Telegonus fulgerator (Lepidoptera: Hesperiidae), Systematics and Biodiversity, 18, 338–346. https://doi.org/10.1080/14772000.2020.1758825
    Pinheiro, H. T., Moreau, C. S., Daly, M. & Rocha, L.A. (2019) Will DNA barcoding meet taxonomic needs? Science, 365 (6456), 873–874. https://doi.org/10.1126/science.aay7174
    Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler, A.P. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609. https://doi.org/10.1080/10635150600852011
    Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
    Renner, S.S. (2016) A return to Linnaeus’s focus on diagnosis, not description: the use of DNA characters in the formal naming of species. Systematic Biology, 65, 1085–1095. https://doi.org/10.1093/sysbio/syw032
    Riedel, A., Sagata, K., Suhardjono, Y.R., Tänzler, R. & Balke, M. (2013a) Integrative taxonomy on the fast track—towards more sustainability in biodiversity research. Frontiers in Zoology, 10, 15. https://doi.org/10.1186/1742-9994-10-15
    Riedel, A., Sagata, K., Surbakti, S., Tänzler, R. & Balke, M. (2013b) One hundred and one new species of Trigonopterus weevils from New Guinea. ZooKeys, 280, 1–150.
    Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., Stauffer, C., Christian, E. & Crozier, R.H. (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology, 55, 421–438. https://doi.org/10.1146/annurev-ento-112408-085432
    Sharkey, M.J., Janzen, D.H., Hallwachs, W., Chapman, E.G., Smith, M.A., Dapkey, T., Brown, A., Ratnasingham, S., Naik, S., Manjunath, R., Perez, K., Milton, M., Hebert, P., Shaw, S.R., Kittel, R.N., Solis, M.A., Metz, M.A., Goldstein, P.Z., Brown, J.W., Quicke, D.L.J., van Achterberg, C., Brown, B.V. & Burns, J.M. (2021a) Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconid parasitoid wasps, including host records for 219 species. ZooKeys, 1013, 1–665. https://doi.org/10.3897/zookeys.1013.55600.figure403
    Sharkey, M., Brown, B., Baker, A. & Mutanen, M. (2021b) Response to Zamani et al. (2020): The omission of critical data in the pursuit of “revolutionary” methods to accelerate the description of species. ZooKeys, 1033, 191–201. https://doi.org/10.3897/zookeys.1033.66186
    Solís-Lemus, C., Knowles, L.L. & Ané, C. (2015) Bayesian species delimitation combining multiple genes and traits in a unified framework. Evolution, 69, 492–507. https://doi.org/10.1111/evo.12582
    Srivathsan, A., Hartop, E., Puniamoorthy, J., Lee, W.T., Kutty, S.N., Kurina, O. & Meier, R. (2019) Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biology, 17, 96. https://doi.org/10.1186/s12915-019-0706-9
    Stankowski, S. & Ravinet, M. (2021) Quantifying the use of species concepts. Current Biology, 31, R428–R429. https://doi.org/10.1016/j.cub.2021.03.060
    Sukumaran, J. & Knowles, L.L. (2017) Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America, 114, 1607–1612. https://doi.org/10.1073/pnas.1607921114
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21, 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x
    Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. & Vogler, A.P. (2003) A plea for DNA taxonomy. Trends in Ecology and Evolution, 18, 70–74. https://doi.org/10.1016/S0169-5347(02)00041-1
    Vences, M. (2020) The promise of next-generation taxonomy. Megataxa, 1 (1), 35–38. https://doi.org/10.11646/megataxa.1.1.6
    Wiemers, M. & Fiedler, K. (2007) Does the DNA barcoding gap exist?—a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology, 4, 8. https://doi.org/10.1186/1742-9994-4-8
    Wu, B., Hussain, M., Zhang, W., Stadler, M., Liu, X. & Xiang, M. (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology, 10 (3), 127–140. https://doi.org/10.1080/21501203.2019.1614106
    Yeates, D.K., Seago, A., Nelson, A., Cameron, S.L., Joseph, L. & Trueman, J.W.H. (2011) Integrative taxonomy, or iterative taxonomy? Systematic Entomology, 36, 209–217. https://doi.org/10.1111/j.1365-3113.2010.00558.x
    Zamani, A., Vahtera, V., Sääksjärvi, I.E. & Scherz, M.D. (2021) The omission of critical data in the pursuit of ‘revolutionary’ methods to accelerate the description of species. Systematic Entomology, 46, 1–4. https://doi.org/10.1111/syen.12444

How to Cite

AHRENS, D. ., AHYONG, S. T. ., BALLERIO, A. ., BARCLAY, M. V. L. ., EBERLE, J. ., ESPELAND, M. ., HUBER, B. A. ., MENGUAL, X. ., PACHECO, T. L. ., PETERS, R. S. ., RULIK, B. ., VAZ-DE-MELLO, F. ., WESENER, T. ., & KRELL, F.-T. . (2021). Is it time to describe new species without diagnoses?—A comment on Sharkey <em>et al.</em> (2021). Zootaxa, 5027(2), 151–159. https://doi.org/10.11646/zootaxa.5027.2.1