Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-08-12
Page range: 257-287
Abstract views: 508
PDF downloaded: 22

Hornera currieae n. sp. (Cyclostomatida: Horneridae): a new bathyal cyclostome bryozoan with reproductively induced skeletal plasticity

Department of Marine Science, University of Otago, Dunedin 9054, New Zealand.
Department of Marine Science, University of Otago, Dunedin 9054, New Zealand.
NIWA, Greta Point, P.O. Box 14-901, Wellington, New Zealand.
Department of Geology, University of Otago, Dunedin 9054, New Zealand.
Department of Marine Science, University of Otago, Dunedin 9054, New Zealand.
Bryozoa new species Cancellata cancelli morphogen gradient ultrastructure crystallite micro-CT

Abstract

Here we describe a new hornerid, Hornera currieae n. sp. (Bryozoa: Cyclostomatida) from bathyal depths across the New Zealand region. Colonies are irregular, finely branched fans attaining ~40 mm or more in height. Key characters include: (1) thick, semi-hyaline porcellanous skeleton; (2) loss or reduction of nervi (longitudinal striae) away from growing tips; (3) sparse, threadlike cancelli; and (4) small (61–87 µm), widely spaced autozooidal apertures. Diagnostic hornerid traits possessed by H. currieae n. sp. include vertical ancestrular tube, periancestrular budding of daughter zooids, and skeletal ultrastructure dominated by hexagonal semi-nacre grading to pseudofoliated fabric. The abfrontal incubation chamber develops from a cryptic tube arising from the frontally positioned aperture of the fertile zooid. We used SEM, micro-CT and electron backscatter diffractometry (EBSD) to investigate the ultrastructure and internal architecture of H. currieae n. sp. EBSD reveals that crystalline c-axes of laminated crystallites are perpendicular to skeletal walls. Threadlike cancelli, which traverse secondary calcification, connect autozooidal chambers to the colony-wide hypostegal cavity. Micro-CT reveals that abfrontal cancelli usually bend proximally towards the base, but turn distally towards reproductively active regions of the colony in synchrony with gonozooid development. The zone of affected cancelli extends for 4–7 branch internodes below the gonozooid. We assessed whether skeletal ultrastructure was similarly affected, but neither cancellus direction, nor gonozooid proximity, were predictive of the crystallite imbrication direction. We hypothesise that (1) hornerid cancelli are active conduits for colonial metabolite transport and (2) that changes in gradients of metabolites and/or reproductive morphogens within the hypostegal cavity affect cancellus morphogenesis. Potentially, H. currieae n. sp. skeletons may preserve a record of intra-colony metabolite translocation dynamics over time.

 

References

  1. Batson, P.B. & Probert, P.K. (2000) Bryozoan thickets off Otago Peninsula. New Zealand. Fisheries Assessment Report 2000/46. Ministry of Fisheries, Wellington, 31 pp.
    Batson, P.B. & Smith, A.M. (2018) Lexicon of extrazooidal calcification in cancellate cyclostomes. In: Wyse Jackson, P.N. & Spencer Jones, M.E. (Eds.), Annals of Bryozoology 6: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp. 1–22.
    Batson, P.B., Taylor, P.D. & Smith, A.M. (2019) Early astogeny in Hornera (Bryozoa; Cyclostomata; Cancellata). Australasian Palaeontological Memoirs, 52, 23–30.
    Batson, P.B., Tamberg, Y., Taylor, P.D., Gordon, D.P. & Smith, A.M. (2020) Skeletal resorption in bryozoans: occurrence, function and recognition. Biological Reviews, 95 (5), p. 1341–1371. https://doi.org/10.1111/brv.12613
    Beklemishev, W.N. (1969) Principles of comparative anatomy of invertebrates: Promorphology. Vol. 1. Oliver & Boyd, Edinburgh, 490 pp. [transl. MacLennan, J. & Kabata, Z.]
    Berking, S. (1986) Transmethylation and control of pattern formation in hydrozoa. Differentiation, 32, 10–16. https://doi.org/10.1111/j.1432-0436.1986.tb00550.x
    Best, M.A. & Thorpe, J.P. (1985) Autoradiographic study of feeding and the colonial transport of metabolites in the marine bryozoan Membranipora membranacea. Marine Biology, 84, 295–300. https://doi.org/10.1007/BF00392499
    Boardman, R.S. (1998) Reflections on the morphology, anatomy, evolution, and classification of the class Stenolaemata (Bryozoa). Smithsonian Contributions to Paleobiology, 86, 1–59. https://doi.org/10.5479/si.00810266.86.1
    Boardman, R.S. & Cheetham, A.H. (1973) Degrees of colony dominance in stenolaemate and gymnolaemate Bryozoa. In: Boardman, R.S., Cheetham, A.H. & Oliver, W.A. (Eds.), Animal colonies: development and function through time. Hutchinson & Ross, Dowden, pp. 121–220.
    Bobin, G. (1977) Interzooecial communications and the funicular system. In: Woollacott, R.M. & Zimmer, R.L. (Eds.), Biology of bryozoans. Academic Press, New York, New York, pp. 307–333. https://doi.org/10.1016/B978-0-12-763150-9.50015-5
    Borg, F. (1926) Studies on Recent cyclostomatous Bryozoa. Zoologicska Bidrag Från Uppsala. Band 10. Almqvist & Wiksells, Uppsala, 507 pp.
    Borg. F. (1941) On the structure and relationships of Crisina (Bryozoa, Stenolaemata). Arkiv for Zoologi, 33A (11), 1–44.
    Bone, E.K. & Keough, M.J. (2010) Does polymorphism predict physiological connectedness? A test using two encrusting bryozoans. The Biological Bulletin, 219, 220–230. https://doi.org/10.1086/BBLv219n3p220
    Busk, G. (1859) A monograph of the fossil Polyzoa of the Crag. Vol. XIV. Palaeontographical Society, London, 136 pp. https://doi.org/10.5962/bhl.title.2037
    Clark, M.R., Bowden, D.A., Baird, S.J. & Stewart, R. (2010) Effects of fishing on the benthic biodiversity of seamounts of the “Graveyard” complex, northern Chatham Rise. New Zealand Aquatic Environment and Biodiversity Report, No. 46, 1–40.
    Clark, M.R., Mills, S., Leduc, D., Anderson, O.F. & Rowden, A.A. (2019a) Biodiversity of Benthic Protection Areas and Seamount Closure Areas: a description of available benthic invertebrate data, and a preliminary evaluation of the effectiveness of BPAs for biodiversity protection. New Zealand Aquatic Environment and Biodiversity Report, No. 227, 1–270.
    Clark, M.R., Bowden, D.A., Rowden, A.A. & Stewart R. (2019b) Little evidence of benthic community resilience to bottom trawling on seamounts after 15 years. Frontiers in Marine Science, 6, 63. https://doi.org/10.3389/fmars.2019.00063
    Ernst, A. & Minwegen, E. (2006) Late Carboniferous bryozoans from La Hermida, Spain. Acta Palaeontologica Polonica, 51 (3), 569–588.
    Fallon, S.J., Thresher, R.E. & Adkins, J. (2014) Age and growth of the coldwater scleractinian Solenosmilia variabilis and its reef on SW Pacific seamounts. Coral Reefs, 33, 31–38. https://doi.org/10.1007/s00338-013-1097-y
    Gordon, D.P. & Taylor, P.D. (2010) New seamount- and ridge-associated cyclostome Bryozoa from New Zealand. Zootaxa, 2533 (1), 43–68. https://doi.org/10.11646/zootaxa.2533.1.3
    Gregory, J.W. (1896) Catalogue of the fossil Bryozoa in the British Museum (Natural History). The Jurassic Bryozoa, London, 239 pp.
    Grischenko, A.V., Gordon, D.P. & Melnik, V.P. (2018) Bryozoa (Cyclostomata and Ctenostomata) from polymetallic nodules in the Russian exploration area, Clarion-Clipperton Zone, eastern Pacific Ocean—taxon novelty and implications of mining. Zootaxa, 4484 (1), 1–91. https://doi.org/10.11646/zootaxa.4484.1.1
    Harmelin, J.-G. (2020) The Mediterranean species of Hornera Lamouroux, 1821 (Bryozoa, Cyclostomata): reas­sessment of H. frondiculata (Lamarck, 1816) and description of H. mediterranea n. sp. Zoosystema, 42 (27), 525–545. https://doi.org/10.5252/zoosystema2020v42a27
    Harvell, C.D. (1994) The evolution of polymorphism in colonial invertebrates and social insects. The Quarterly Review of Biology, 69, 155–185. https://doi.org/10.1086/418538
    Jacob, D.E., Ruthensteiner, B., Trimby, P., Henry, H., Martha, S.O., Leitner, J., Otter, L.M. & Scholz, J. (2019) Architecture of Anoteropora latirostris (Bryozoa, Cheilostomata) and implications for their biomineralization. Scientific Reports, 9 (1), 1–13. https://doi.org/10.1038/s41598-019-47848-4
    Lamouroux, J. (1821) Exposition méthodique des genres de l’ordre des polypiers, avec leur description et celle des principales espèces, figurées dans 84 planches; les 63 premier appartenant à l’histoire naturelle des zoophytes d’Ellis et Solander. Agasse, Paris, 115 pp., 84 pls. https://doi.org/10.5962/bhl.title.11328
    Martha, S.O., Ruthensteiner, B., Taylor, P.D., Hillmer, G. & Matsuyama, K. (2019) Description of a new cyclostome species from the middle Santonian of Germany using micro-computed tomography. Australasian Palaeontological Memoirs, 52, 91–99.
    Matsuyama, K., Titschack, J., Baum, D. & Freiwald, A. (2015) Two new species of erect Bryozoa (Gymnolaemata: Cheilostomata) and the application of non-destructive imaging methods for quantitative taxonomy. Zootaxa, 4020 (1), 81–100. https://doi.org/10.11646/zootaxa.4020.1.3
    McKinney, F.K., Taylor, P.D. & Zullo, V.A. (1993) Lyre-shaped hornerid bryozoan colonies: homeomorphy in colony form between Paleozoic Fenestrata and Cenozoic Cyclostomata. Journal of Paleontology, 67 (3), 343–354. https://doi.org/10.1017/S0022336000036829
    McKinney, F.K. (1993) A faster-paced world?: contrasts in biovolume and life-process rates in cyclostome (Class Stenolaemata) and cheilostome (Class Gymnolaemata) bryozoans. Paleobiology, 19, 335–351. https://doi.org/10.1017/S0094837300000312
    Miles, J.S., Harvell, C.D., Griggs, C.M. & Eisner, S. (1995) Resource translocation in a marine bryozoan: quantification and visualization of 14C and 35S. Marine Biology, 122, 439–446. https://doi.org/10.1007/BF00350877
    Mongereau, N. (1972) Le genre Hornera Lamouroux, 1821, en Europe (Bryozoa—Cyclostomata), Annalen des Naturhistorischen Museums, Wien, 76, 311–373.
    Nekliudova, U.A., Schwaha, T.F., Kotenko, O.N., Gruber, D., Cyran, N. & Ostrovsky, A.N. (2021) Three in one: evolution of viviparity, coenocytic placenta and polyembryony in cyclostome bryozoans. BMC Ecology & Evolution, 21, 54. https://doi.org/10.1186/s12862-021-01775-z
    Nielsen, C. & Pedersen, K.J. (1979) Cystid structure and protrusion of the polypide in Crisia (Bryozoa, Cyclostomata). Acta Zoologica, Stockholm, 60, 65–88. https://doi.org/10.1111/j.1463-6395.1979.tb00599.x
    Ostrovsky, A.N. & Taylor, P.D. (1996) Systematics of some Antarctic Idmidronea and Exidmonea (Bryozoa: Cyclostomata). Journal of Natural History, 30, 1549–1575. https://doi.org/10.1080/00222939600770881
    Pachut, J.F. & Anstey, R.L. (1979) A developmental explanation of stability-diversity-variation hypotheses: Morphogenetic regulation in Ordovician bryozoan colonies. Paleobiology, 5, 168–187. https://doi.org/10.1017/S009483730000645X
    R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: https://www.r-project.org (accessed 20 July 2021)
    Rogers, K.W. & Schier, A.F. (2011) Morphogen gradients: from generation to interpretation. Annual Review of Cell and Developmental Biology, 27, 377–407. https://doi.org/10.1146/annurev-cellbio-092910-154148
    Schäfer, P. (1991) Brutkammern der Stenolaemata (Bryozoa): Konstructionsmorphologie und phylogenetische bedeutung. Courier Forschungsinstitut Senckenberg, 136, 1–147.
    Schwaha, T.F., Ostrovsky, A.N. & Wanninger, A. (2020) Key novelties in the evolution of the aquatic colonial phylum Bryozoa: evidence from soft body morphology. Biological Reviews, 95 (3), 696–729. https://doi.org/10.1111/brv.12583
    Shreve, R.L. (1967) Infinite typologically random channel networks. Journal of Geology, 75, 178–186. https://doi.org/10.1086/627245
    Smith, A.M., Taylor, P.D. & Spencer, H.G. (2008) Resolution of taxonomic issues in the Horneridae (Bryozoa: Cyclostomata). In: Wyse Jackson, P.N. & Spencer Jones, M.E. (Eds.), Annals of Bryozoology. Vol. 2. Aspects of the History of Research on Bryozoans, International Bryozoology Association, Dublin, pp. 359–412.
    Smith, A.M., Batson, P.B., Waeschenbach, A., Taylor, P.D., Jenkins, H.L., Gordon, D.P. (2021) Molecular and morphological techniques show bryozoan family Horneridae (Cyclostomata: Cancellata) in southern New Zealand is unexpectedly diverse. [in preparation]
    Smitt, F.A. (1866) Kritisk förteckning öfver Scandinaviens Hafs-Bryozoer. Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar, Årg, 23, 395–534, 13 pls.
    Strahler, A.N. (1957) Quantitative analysis of watershed geomorphology. American Geophysical Union Transactions, 38, 913–920. https://doi.org/10.1029/TR038i006p00913
    Tamberg, Y. & Smith, A.M. (2020) In search of predictive models for stenolaemate morphometry across the skeletal-polypide divide. Paleobiology, 46 (2), 218–236. https://doi.org/10.1017/pab.2020.13
    Tavener-Smith, R. & Williams, A. (1972) The structure and secretion of the skeleton of fossil and living Bryozoa. Philosophical Transactions of the Royal Society, Series B, 264, 97–160. https://doi.org/10.1098/rstb.1972.0010
    Taylor, P.D. (1981) Functional morphology and evolutionary significance of differing modes of tentacle eversion in marine bryozoans. In: Larwood, G.P. & Nielsen, C. (Eds.), Recent and Fossil Bryozoa. Proceedings of the Fifth Conference of the International Bryozoology Association, Olsen & Olsen, Fredensborg, pp. 235–247.
    Taylor, P.D. (2020) Bryozoan Palaeobiology. Wiley-Blackwell, New York, New York, 336 pp.
    Taylor, P.D. & Jones, C.G. (1993) Skeletal ultrastructure in the cyclostome bryozoan Hornera. Acta Zoologica, 74 (2), 135–143. https://doi.org/10.1111/j.1463-6395.1993.tb01230.x
    Taylor, P.D. & Weedon, M.J. (2000) Skeletal ultrastructure and phylogeny of cyclostome bryozoans. Zoological Journal of the Linnaean Society, 128, 337–399. https://doi.org/10.1111/j.1096-3642.2000.tb01521.x
    Taylor, P.D. & Jenkins, H.L. (2018) Evolution of larval size in cyclostome bryozoans. Historical Biology, 30 (4), 535–545. https://doi.org/10.1080/08912963.2017.1301447
    Urbanek, A. (2004) Morphogenetic gradients in graptolites and bryozoans. Acta Palaeontologica Polonica, 49, 485–504.
    Venit, E.P. (2007) Evolutionary trends in the individuation and polymorphism of colonial marine invertebrates. PhD Thesis, Duke University, Beaufort, North Carolina, 142 pp.
    Vielzeuf, D., Garrabou, J., Gagnon, A., Ricolleau, A., Adkins, J., Günther, D., Hametner, K., Devidal, J.-L., Reusser, E., Perrin, J. & Floquet, N. (2013) Distribution of sulphur and magnesium in the red coral. Chemical Geology, 355, 13–27. https://doi.org/10.1016/j.chemgeo.2013.07.008
    Waeschenbach, A., Cox, C.J., Littlewood, D.T.J., Porter, J.S. & Taylor, P.D. (2009) First molecular estimate of cyclostome bryozoan phylogeny confirms extensive homoplasy among skeletal characters used in traditional taxonomy. Molecular Phylogenetics and Evolution, 52, 241–251. https://doi.org/10.1016/j.ympev.2009.02.002
    Wood, A.C.L., Probert, P.K., Rowden, A. & Smith, A.M. (2012) Complex habitat generated by marine bryozoans: a review of its distribution, structure, diversity, threats and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 22, 547–563. https://doi.org/10.1002/aqc.2236
    Wong, Y.H., Wang, H., Ravasi, T. & Qian, P.-Y. (2012) Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. PLoS One, 7 (3), e33323, 1–12. https://doi.org/10.1371/journal.pone.0033323
    Wyse Jackson, P.N., Key, M.M. Jr. & Reid, C.M. (2020) Bryozoan Skeletal Index (BSI): a measure of the degree of calcification in stenolaemate bryozoans. In: Wyse Jackson, P.N. & Zágoršek, K. (Eds.), Bryozoan Studies 2019. Czech Geological Survey, Prague, pp. 193–206.

  2.  

  3.