Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-03-24
Page range: 149–162
Abstract views: 99
PDF downloaded: 11

Phylogenetic and phylogeographic analysis of Myrmeleotettix maculatus (Orthoptera: Acrididae: Gomphocerinae) species group in Anatolia

Department of Biology, Faculty of Art and Science, Tekirdağ Namık Kemal University, Tekirdağ, TURKEY,
Department of Biology, Science Institute, Hakkari University, Hakkari, TURKEY.
Department of Biology, Faculty of Art and Science, Tekirdağ Namık Kemal University, Tekirdağ, TURKEY,
Faculty of Health Sciences, Marmara University, Istanbul, TURKEY.
4Institute for Biology and Environmental Science (IBU), Plant Biodiversity and Evolution, Carl Von Ossietzky University, Oldenburg, GERMANY.
Orthoptera Myrmeleotettix maculatus Acrididae COI mitochondrial DNA molecular phylogeny

Abstract

Six Anatolian and one European populations of the Myrmeleotettix maculatus species group, which contains M. maculatus and M. ethicus species, have been studied by using molecular genetics methods with mitochondrial COI gene. Myrmeleotettix ethicus is an Anatolian endemic species with local distribution whereas M. maculatus is distributed in western Palearctic. The phylogenetic analysis (ML and BI analyses) of the M. maculatus species group in Anatolia reveals that it consistently recovered two well-supported main clades and four different lineages. Molecular time estimates suggest that the diversification of the M. maculatus species group took place between the Late Tortonian (around 8-9 My) and the Middle of Pliocene-Pleistocene (around 4.3 My—present) periods and the current distribution of the genetic diversity has been affected by the uplifting of the Central Anatolian plateau, the termination of the Messinian salinity crisis, and the Quaternary climatic changes.

 

References

  1. Akaike, H. (1974) New look at statistical-model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    https://doi.org/10.1109/TAC.1974.1100705

    Aljanabi, S.M. & Martinez, I. (1997) Universal and Rapid Salt-Extraction of High Quality Genomic DNA for PCR-Based Techniques. Nucleic Acids Research, 25, 4692–4693.

    https://doi.org/10.1093/nar/25.22.4692

    Atalay, I., Tetik, M. & Yılmaz, O. (1985) Ecosystems of Northeastern Anatolia. Aegean Geographical Journal, 3, 16–56.

    Bartol, J. & Govers, R. (2014) A single cause for uplift of the Central and Eastern Anatolian plateau? Tectonophsics, 637, 116–136.

    https://doi.org/10.1016/j.tecto.2014.10.002

    Bei-Bienko, G.J. & Mistshenko, L.L. (1951) The grashopper fauna of the USSR and adjacent countries. Vol. II. Tom. 40. Akademii Nauk., Moskova, Leningrad, 667 pp.

    Berger, D., Chobanov, D. & Mayer, F. (2010) Interglacial refugia and range shifts of the alpine grasshopper Stenobothrus cotticus (Orthoptera: Acrididae: Gomphocerinae). Organisms Diversity & Evolution, 10, 123–133.

    https://doi.org/10.1007/s13127-010-0004-4

    Berger, D. & Gottsberger, B. (2010) Analysis of the courtship of Myrmeleotettix antennatus (Fieber, 1853) with general remarks on multimodal courtship behaviour in Gomphocerinae grasshoppers. Articulata, 25 (1), 1–21.

    Bilgin, R. (2011) Back to the Suture: The Distribution of Intraspecific Genetic Diversity in and Around Anatolia. International Journal of Molecular Sciences, 12 (6), 4080–4103.

    https://doi.org/10.3390/ijms12064080

    Bugrov, A., Novikova, O., Mayorov, V., Adkison, L. & Blinov, A. (2005) Molecular phylogeny of Palaearctic genera of Gomphocerinae grasshoppers (Orthoptera, Acrididae). Systematic Entomology, 31, 362–368.

    https://doi.org/10.1111/j.1365-3113.2005.00317.x

    Chapco, W., Litzenberger, G. & Kuperus, W.R. (2001) A molecular biogeographic analysis of the relationship between North American melanoploid grasshoppers and their Eurasian and South American relatives. Molecular Phylogenetics and Evolution, 18, 460–466.

    https://doi.org/10.1006/mpev.2000.0902

    Chernyakhovskii, M.N. & Ravina, N.V. (1997) Fauna and ecological distribution of locust (Orthoptera, Acrididae) in high mountains of Daghestan. Entomological Review, 77, 241–247.

    Cigliano, M.M., Braun, H., Eades, D.C. & Otte, D. (2020) Orthoptera Species File. Version 5.0/5.0. Available from: http://Orthoptera.SpeciesFile.org (accessed 8 September 2020)

    Contreras, D. & Chapco, W. (2006) Molecular phylogenetic evidence for multiple dispersal events in gomphocerine grasshoppers. Journal of Orthoptera Research, 15, 91–98.

    https://doi.org/10.1665/1082-6467(2006)15[91:MPEFMD]2.0.CO;2

    Cooper, S.J.B., Ibrahim, K.M. & Hewitt, G.M. (1995) Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Molecular Ecology, 4, 49–60.

    https://doi.org/10.1111/j.1365-294X.1995.tb00191.x

    Cox, C.B. & Moore, D.P. (2005) Biogeography: An ecological and evolutionary approach. 7th Edition. Blackwell Publishing, Oxford, 428 pp.

    Çıplak, B. (2008) Chapter 6. The analogy between glacial cycles and global warming for the glacial relicts in a refugium: a biogeographic perspective for conservation of Anatolian Orthoptera. In: Fattorini, S. (Ed.), Insect Ecology and Conservation. Research Signpost. Fort P.O., Trivandrum, Kerala, pp. 135–163.

    Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9,772.

    https://doi.org/10.1038/nmeth.2109

    De Lattin, G. (1967) Grundriss der Zoogeographie. Gustav Fischer Verlag, Jena, 602 pp.

    Demirsoy, A. (1977) Türkiye Caelifera (Insecta, Orthoptera) faunasının tespiti ve taksonomik olarak incelenmesi. Atatürk Üniversitesi Basımevi, Erzurum, 252 pp. [in Turkish]

    Demirsoy, A. (1999) Genel ve Türkiye Zoocoğrafyası “Hayvan Coğrafyası”. 2nd Edition. Meteksan, Ankara, 965 pp. [in Turkish]

    Excoffier, L., Laval, G. & Schneider, S. (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.

    https://doi.org/10.1177/117693430500100003

    Felsenstein, J. (1981) Evolutionary trees from DNA sequences, a maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.

    https://doi.org/10.1007/BF01734359

    Felsenstein, J. (1985) Confidence limits on phylogenies an approach using the bootstrap. Evolution, 39, 783–791.

    https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–297.

    Fu, Y.X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.

    https://doi.org/10.1093/genetics/147.2.915

    Gündüz, İ., Jaarola, M., Tez, C., Yeniyurt, C., Polly, P.D. & Searle, J.B. (2007) Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a description of a new species. Molecular Phylogenetics and Evolution, 43, 916–935.

    https://doi.org/10.1016/j.ympev.2007.02.021

    Gür, H. (2013) The effects of the Late Quaternary glacial-interglacial cycles on Anatolian ground squirrels: Range expansion during the glacial periods? Biological Journal of the Linnean Society, 109 (1), 19–32.

    https://doi.org/10.1111/bij.12026

    Harz, K. (1975) The Orthoptera of Europe II. Series entomologica 11. W. Junk B.V., The Hague, 939 pp.

    Hewitt, G.M. (1996) Some genetic consequence of ice ages, and their role in diverging and speciation. Biological Journal of Linnaean Society, 58, 247–276.

    https://doi.org/10.1006/bijl.1996.0035

    Hewitt, G.M. (1999) Post-glacial re-colonisation of European biota. Biological Journal of Linnean Society, 68, 87–112.

    https://doi.org/10.1111/j.1095-8312.1999.tb01160.x

    Hewitt, G.M. (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.

    https://doi.org/10.1038/35016000

    Hsü, K.J., Montadert, L., Bernoulli, D., Cita, M.B., Erickson, A., Garrison, R.E., Kidd, R.B., Melieres, F., Muller, C. & Wright, R. (1977) History of the Messinian salinity crisis. Nature, 267, 399–403.

    https://doi.org/10.1038/267399a0

    Huelsenbeck, J.P., Rannala, B. & Larget, B. (2000) A Bayesian framework for the analysis of cospeciation. Evolution; International Journal of Organic Evolution, 54 (2), 352–364.

    https://doi.org/10.1111/j.0014-3820.2000.tb00039.x

    Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.

    https://doi.org/10.1093/bioinformatics/17.8.754

    İbiş, O., Tez, C. & Özcan, S. (2014) Phylogenetic status of the Turkish red fox (Vulpes vulpes), based on partial sequences of the mitochondrial cytochrome b gene. Vertebrate Zoology, 64 (2), 273–284.

    İbiş, O., Koepfli, K.P., Özcan, S. & Tez, Ç. (2018) Genetic analysis of Turkish martens: Do two species of the genus Martes occur in Anatolia? Zoologica Scripta, 2018 (47), 390–403.

    https://doi.org/10.1111/zsc.12289

    Jobb, G., von Haeseler, A. & Strimmer, K. (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evolutionary Biology, 4, 18.

    https://doi.org/10.1186/1471-2148-4-18

    Karabağ, T. (1958) Türkiye’nin Orthoptera faunası. Şirketi Murettebiye Basımevi, Istanbul, 192 pp. [in Turkish]

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analyses of sequence data. Bioinformatics, 28 (12), 1647–1649.

    https://doi.org/10.1093/bioinformatics/bts199

    Krijgsman, W., Hilgen, F.J., Ray, I., Sierro, F.J. & Wilson, D.S. (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.

    https://doi.org/10.1038/23231

    Larget, B. & Simon, D.L. (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16, 750–759.

    https://doi.org/10.1093/oxfordjournals.molbev.a026160

    Lunt, D.H., Ibrahim, K.M. & Hewitt, G.M. (1998) mtDNA phylogeography and postglacial patterns of subdivision in the meadow grasshopper Chorthippus parallelus. Heredity, 80, 633–641.

    https://doi.org/10.1046/j.1365-2540.1998.00311.x

    Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.

    Mau, B. & Newton, M. (1997) Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. Journal of Computational and Graphical Statistics, 6, 122–131.

    https://doi.org/10.1080/10618600.1997.10474731

    Mau, B., Newton, M. & Larget, B. (1999) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics, 55, 1–12.

    https://doi.org/10.1111/j.0006-341X.1999.00001.x

    Mol, A., Taylan, M.S., Zeybekoğlu, Ü. & Şirin, D. (2019) The Distribution of Gomphocerinae Taxa in the Black Sea Region of Turkey: The Role of Vegetations and Elevations. Journal of the Entomological Research Society, 21 (2), 185–197.

    Nattier, R., Robillard, T., Amedegnato, C., Couloux, A., Cruaud, C. & Desutter-Grandcolas, L. (2011) Evolution of acoustic communication in the Gomphocerinae (Orthoptera: Caelifera: Acrididae). Zoologica Scripta, 40 (5), 479–497.

    https://doi.org/10.1111/j.1463-6409.2011.00485.x

    Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, 512 pp.

    Papadopoulou, A., Anastasiou, I. & Vogler, A.P. (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution, 27, 1659–1672.

    https://doi.org/10.1093/molbev/msq051

    Pisias, N.G. & Moore Jr., T.C. (1981) The evolution of Pleistocene climate: A time series approach. Earth and Planetary Science Letters, 52, 450–458.

    https://doi.org/10.1016/0012-821X(81)90197-7

    Popov, S.V., Shcherba, I.G., Ilyina, L.B., Nevesskaya, L.A., Paramonova, N.P., Khondkarian, S.O. & Magyar, I. (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 91–106.

    https://doi.org/10.1016/j.palaeo.2006.03.020

    Öğretmen, N., Cipollari, P., Frezza, V., Faranda, C., Karanika, K., Gliozzi, E., Radeff, G. & Cosentino, D. (2018) Evidence for 1.5 km of uplift of the Central Anatolian Plateau’s southern margin in the last 450 kyr and implications for its multiphased uplift history. Tectonics, 37, 359–390.

    https://doi.org/10.1002/2017TC004805

    Rambaut, A. (2010) FigTree. Version 1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Available from: http://tree.bio.ed.ac.uk/software/figtree/. (accessed 1 August 2020)

    Rambaut, A. & Drummond, A.J. (2007) TRACER. Version 1.5. Available from: http://evolve.zoo.ox.ac.u/Evolve/Software.html (accessed 10 August 2020)

    Rannala, B. &Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution, 43, 304–311.

    https://doi.org/10.1007/BF02338839

    Ronquist, F. & Huelsenbeck, J.P. (2003) Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    https://doi.org/10.1093/bioinformatics/btg180

    Rögl, F. (1999) Mediterranean and Paratethys Palaegeography during the Oligocene and Miocene, Hominoid evolution and climatic change in Europe. Vol. 1. In: Agustr, J., Rook, L. & Andrews, P. (Eds.), The Evolution of the Neogene Terrestrial Ecosystems in Europe. Cambridge University Press, Cambridge, pp. 8–22.

    https://doi.org/10.1017/CBO9780511542329.002

    Salman, S. (1978) Ağrı, Kars ve Artvin illerinin Orthoptera (Insecta) faunası üzerine taksonomik araştırmalar. Atatürk Üniversitesi Fen Fakültesi Yayınları, Erzurum, 184 pp. [in Turkish]

    Schmitt, T. (2007) Molecular biography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4, 1–13.

    https://doi.org/10.1186/1742-9994-4-11

    Simbulan-Rosenthal, C.M., Rosenthal, D.S. & Smulson, M.E. (2011) Purification and Characterization of Poly(ADP-Ribosyl)ated DNA Replication/Repair Complexes. In: Tulin, A. (Ed.), Poly (ADP-ribose) Polymerase. Methods in Molecular Biology (Methods and Protocols). Vol. 780. Humana Press, Totowa, New Jersey. Available from: https://experiments.springernature.com/articles/10.1007/978-1-61779-270-0_11 (accessed 22 February 2021)

    https://doi.org/10.1007/978-1-61779-270-0_11

    Soltani, A.A. (1978) Preliminary synonymy and description of new species in the genus Dociosturus Fieber, 1853 (Orthoptera, Acridoidea; Gomphocerinae) with a key to the species in the genus. Journal of Entomological Society of Iran, 2, 1–93.

    Steininger, F.F. & Rögl, F. (1984) Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. In: Dixon, J.E. & Robertson, A.H.F. (Eds.), The Geological Evolution of Eastern Mediterranean. The Geological Society, Blackwell Scientific, Oxford, pp. 659–668.

    https://doi.org/10.1144/GSL.SP.1984.017.01.52

    Swofford, D.L. (2019) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0a165. Available from: http://phylosolutions.com/pauptest/ (accessed 22 February 2021)

    Şirin, D., Helversen, O.von. & Çıplak, B. (2010) Chorthippus brunneus subgroup (Orthoptera, Gomphocerinae) in Anatolia with description of two new species: data suggest an Anatolian origin for the lineage. Zootaxa, 2410 (1), 1–28.

    https://doi.org/10.11646/zootaxa.2410.1.1

    Şirin, D., Mol, A. & Çıplak, B. (2011) Myrmeleotettix Bolivar (Orthoptera, Gomphocerinae) in Anatolia on the basis of morphological and behavioural characters: data suggest a new species from southern end of the Anatolian refugium. Zootaxa, 2917 (1), 29–47.

    https://doi.org/10.11646/zootaxa.2917.1.2

    Tajima, F. (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics, 105, 437–460.

    https://doi.org/10.1093/genetics/105.2.437

    Tajima, F. (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.

    https://doi.org/10.1093/genetics/123.3.585

    Taylan, M.S., Di Russo, C., Rampini, M. & Ketmaier, V. (2013) Molecular systematics of the genus Troglophilus (Rhaphidophoridae, Orthoptera) in Turkey: mitochondrial 16S rDNA evidences. ZooKeys, 257, 33–46.

    https://doi.org/10.3897/zookeys.257.4133

    Taylan, M.S. & Şirin, D. (2016) Speciation of the genus Dolicophoda in Anatolia with reference to the role of ancient central lake system. Insect Systematics and Evolution, 47 (3), 267–283.

    https://doi.org/10.1163/1876312X-47032143

    Ustinova, J. & Mayer, F. (2006) Alternative Starts of Transcription, Several Paralogues, and Almost-Fixed Interspecific Differences of the Gene fruitless in a Hemimetabolous Insect. Journal of Molecular Evolution, 63, 788–800.

    https://doi.org/10.1007/s00239-005-6230-2

    Uvarov, B.P. (1921) The geographical distribution of Orthopterous insects in the Caucasus and in Western Asia. Proceeding of Zoological Society of London, 31, 447–472.

    https://doi.org/10.1111/j.1096-3642.1921.tb03273.x

    Ünal, M. (2011) Turkish Orthoptera Site (TOS). Available from: http://www.orthoptera-tr.org (accessed 08 September 2020)

    Vedenina, V.Y. & Mugue, N. (2011) Speciation in gomphocerine grasshoppers: molecular phylogeny versus bioacoustics and courtship behaviour. Journal of Orthoptera Research, 20 (1), 109–125.

    https://doi.org/10.1665/034.020.0111

    Wang, N.-X., Feng, X. Jiang, G.-F., Fang, N. & Xuan, W.-J. (2008) Molecular phylogenetic analysis of five subfamilies of the Acrididae (Orthoptera: Acridoidea) based on the mitochondrial cytochrome b and cytochrome c oxidase subunit I gene sequences. Acta Entomologica Sinica, 51 (11), 1187–1195.

    Webb, T. & Bartlein, P.J. (1992) Global changes during the last 3 million years: climatic controls and biotic responses. Annual Review of Ecology and Systematics, 23, 141–173.

    https://doi.org/10.1146/annurev.es.23.110192.001041

    Weidner, H. (1969) Beitrage zur Kenntnis der Feldheuschenrecken (Caelifera) Anatoliens. Mittellungen aus dem Zoology Museum of Berlin, 66, 145–226.

    Weir, J.T. & Schlutter, D. (2004) Ice sheets promote speciation in boreal birds. Proceeding of the Royal Society London B, 271, 1881–1887.

    https://doi.org/10.1098/rspb.2004.2803

    Yang, Z. (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution, 39, 306–314.

    https://doi.org/10.1007/BF00160154

    Yin, X.C., Xia, K.L., Zheng, Z.M., Bi, D.Y., Huang, C.M., You, Q.J., Liu, J.P., Zhang, F.L. & Li, T.S. (2003) Fauna Sinica, Insecta. Vol. 32. Orthoptera Acridoidea: Gomphoceridae and Acrididae. Science Publishing House, Beijing, 736 pp.