Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-01-22
Page range: 326–338
Abstract views: 120
PDF downloaded: 16

Revision of the diagnostic characters of two morphologically similar snook species, Centropomus viridis and C. nigrescens (Carangiformes: Centropomidae)

Centro de Investigación en Alimentación y Desarrollo unidad Mazatlán, Av. Sábalo-Cerritos s/n, Estero del Yugo 82100, Mazatlán, Sinaloa, México. Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor 03940, Ciudad de México, México.
Centro de Investigación en Alimentación y Desarrollo unidad Mazatlán, Av. Sábalo-Cerritos s/n, Estero del Yugo 82100, Mazatlán, Sinaloa, México.
Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Ave. IPN s/n, Col. Playa Palo de Santa Rita 23096, La Paz, Baja California Sur, México.
Centro de Investigación en Alimentación y Desarrollo unidad Mazatlán, Av. Sábalo-Cerritos s/n, Estero del Yugo 82100, Mazatlán, Sinaloa, México. Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Oceanshore Blvd, St. Augustine, Florida 32080.
Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana, Zona Playitas 22860, Ensenada, Baja California, México.
Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana, Zona Playitas 22860, Ensenada, Baja California, México.
Instituto Nacional de Pesca y Acuacultura, Playa Ventanas s/n, Carretera Manzanillo a Campos Colima 28200, Manzanillo, Colima, México.
Pisces white snook black snook taxonomy geometric morphometrics identification key

Abstract

Historically, the taxonomic identification of the two snook species, Centropomus viridis and C. nigrescens, has been challenging due to their morphological similarity and the inconsistency of the characters used for diagnosis. Therefore, this study aimed to evaluate the usefulness of the morphologic, meristic, and morphometric characters currently being used to identify C. viridis and C. nigrescens, based on molecular data. The results showed that the gas-bladder shape (i.e., C. viridis with diverticula and C. nigrescens without diverticula) was the only morphological character univocally related to genetic identification. Likewise, geometric morphometrics separated two groups; each corresponds to only one of two genetically (and gas bladder shape) identified species. Of all the meristic characters examined, only the second dorsal fin ray count (nine for C. viridis and ten for C. nigrescens) was related to the gas bladder shape and genetic identity; therefore, it is the only external character with a diagnostic utility to separate each species.

 

References

  1. Allen, G.R. & Robertson, D.R. (1994) Fishes of the tropical eastern Pacific. University of Hawaii Press, Honolulu, Hawaii, 359 pp.

    Alvarez del Villar, J. (1970) Peces mexicanos (claves). Instituto Nacional de Investigaciones Bioloìgico Pesqueras, Comisión Nacional Consultiva de Pesca, Distrito Federal, 166 pp.

    Alvarez-Lajonchère, L. & Tsuzuki, M. (2008) A review of methods for Centropomus spp. (snooks) aquaculture and recommendations for the establishment of their culture in Latin America. Aquaculture Research, 39 (7), 684–700.

    https://doi.org/10.1111/j.1365-2109.2008.01921.x

    Arreguín-Sánchez, F. & Arcos-Huitrón, E. (2011) La pesca en México: estado de la explotación y uso de los ecosistemas. Hidrobiológica, 21 (3), 431–462.

    Bauchot, M.L. & Desoutter, M. (1987) Catalogue critique des types de Poissons du Muséum national d’Histoire naturelle. (Suite) Sous-ordre des Percoidei (familles des Apogonidae, Teraponidae). Bulletin du Museum National d’Histoire Naturelle Serie 4, Section A, Zoologie, Biologie et Ecologie Animales, 8 (4), 51–130.

    Birindelli, J.L.O., Sousa, L.M. & Sabaj, L.M. (2009) Morphology of the gas bladder in thorny catfishes (Siluriformes: Doradidae). Proceedings of the Academy of Natural Sciences of Philadelphia, 158 (1), 261–296.

    https://doi.org/10.1635/053.158.0114

    Bookstein, F.L. (1989) Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (6), 567–585.

    https://doi.org/10.1109/34.24792

    Boulenger, G.A. (1895) Catalogue of the perciform fishes in the British Museum. Vol. 1. British Museum (Natural History), London, 394 pp.

    Bussing, A. (1995) Centropomidae. In: Fisher, W., Krupp, F., Schneider, W., Sommer, C., Carpenter, K.E. & Niem, V.H. (Eds.), Guía FAO para la identificación de especies para los fines de la pesca. Pacífico Centro-Oriental. Vol II. Vertebrados-Parte 1. FAO, Rome, pp. 114–1128.

    Carvalho-Filho, A., de Oliveira, J., Soares, C. & Araripe, J. (2019) A new species of snook, Centropomus (Teleostei: Centropomidae), from northern South America, with notes on the geographic distribution of other species of the genus. Zootaxa, 4671 (1), 81–92.

    https://doi.org/10.11646/zootaxa.4671.1.6

    Castro-Aguirre, J.L. (1978) Catálogo sistemático de los peces marinos que penetran a las aguas continentales de México con aspectos zoogeográficos y ecológicos. Departamento de Pesca, Dirección General del Instituto Nacional de Pesca, Distrito Federal, 298 pp.

    Castro-Aguirre, J.L., Espinosa-Pérez, H.S. & Schmitter-Soto, J.J. (1999) Ictiofauna estuarino-lagunar y vicaria de México. Limusa-Noriega, Distrito Federal, 711 pp.

    Chao, L.N. (1978) A basis for classifying Western Atlantic Sciaenidae (Teleostei: Perciformes). NOAA Technical Report NMFS Circular 415. U.S. Government Printing Office, Washington, D.C., 64 pp.

    Chávez, H. (1961) Estudio de una nueva especie de robalo del Golfo de México y redescripción de Centropomus undecimalis (Bloch) (Pisc., Centropom.). Ciencia, 21 (2), 75–83.

    Evermann, B.W. & Jenkins, O.P. (1891) Report upon a collection of fishes made at Guaymas Sonora, Mexico, with descriptions of new species. Proceedings of the United States National Museum, 14 (846), 121–165.

    https://doi.org/10.5479/si.00963801.14-846.121

    Fine, M.L. & Parmentier, E. (2015) Mechanisms of fish sound production. In: Ladich, F. (Ed.), Sound communication in fishes. Springer-Verlag, Vienna, pp. 77–126.

    https://doi.org/10.1007/978-3-7091-1846-7_3

    Fricke, R., Eschmeyer, W.N. & Van der Laan, R. (2020) Eschmeyer’s catalog of fishes: Genera, Species, References. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 12 February 2020)

    Futuyma, D.J. & Kirkpatrick, M. (2017) Evolution. Sinauer Associates. Sunderland, Massachusetts, 725 pp.

    Geller, J.B., Carlton, J.T. & Powers, D.A. (1993) Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of Mytilus spp. (Bivalvia: Mollusca). Molecular Marine Biololgy and Biotechnology, 2 (1), 44–50.

    Gilbert, C.E. & Starks, E.C. (1904) The fishes of Panama Bay. Memoirs of the California Academy of Sciences, 4, 1–304.

    Girard, M.G., Davis, M.P. & Smith, W.L. (2020) The phylogeny of carangiform fishes: morphological and genomic investigations of a new fish clade. Copeia, 108 (2), 265–298.

    https://doi.org/10.1643/CI-19-320

    Günther, A. (1864) Report of a collection of fishes made by Messrs. Dow, Godman, and Salvin in Guatemala. Proceedings of the Zoological Society of London, 1864 (1), 144–154.

    Higgins, D.G., Thompson, J.D. & Gibson, T.J. (1996) Using CLUSTAL for multiple sequence alignments. In: Doolittle, R.F. (Ed.), Methods in Enzymology Vol. 266. Academic Press, San Diego, pp. 383–402.

    https://doi.org/10.1016/S0076-6879(96)66024-8

    Ibarra-Castro, L., Navarro-Flores, J., Sánchez-Téllez, J.L., Martínez-Brown, J.M., Ochoa-Bojórquez, L.A. & Rojo-Cebreros, A.H. (2017) Hatchery production of Pacific White Snook at CIAD-Unity Mazatlan, Mexico. World Aquaculture Magazine, 48 (3), 25–29.

    Jordan, D.S. & Evermann, B.W. (1896) The fishes of North and Middle America: a descriptive catalogue of the species of fish-like vertebrates found in the waters of North America, north of the Isthmus of Panama. Bulletin of the United States National Museum, 47 (1), 1–1240.

    https://doi.org/10.5962/bhl.title.39714

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35 (6), 1547–1549.

    https://doi.org/10.1093/molbev/msy096

    Lockington, W. (1877) Notes on California fishes. Proceedings of the California Academy of Sciences, 7 (1), 108–110.

    Meek, S.E. & Hildebrand, S.F. (1925) The marine fishes of Panama. Field Museum of Natural History, Zoological Series, 15 (2), 331–707.

    Miller, R.R., Minckley, W.L. & Norris, S.M. (2005) Freshwater fishes of México. The University of Chicago Press, Chicago, Illinois, 490 pp.

    Nelson, J.S., Grande, T.C. & Wilson, M.V.H. (2016) Fishes of the world. Wiley, Hoboken, New Jersey, 622 pp.

    https://doi.org/10.1002/9781119174844

    Palumbi, S. (1996) Nucleic acids II: The Polymerase Chain Reaction. In: Hillis, D., Moritz, C. & Mable, B. (Eds.), Molecular Systematics. Sinauer Associates, Massachusetts, pp. 205–247.

    Parmentier, E., Boyle, K.S., Berten, L., Brié, C. & Lecchini, D. (2011) Sound production and mechanism in Heniochus chrysostomus (Chaetodontidae). Journal of Experimental Biology, 214, 2702–2708.

    https://doi.org/10.1242/jeb.056903

    Puentes, V., Escobar, F.D., Polo, C.J. & Alonso, J.C. (2014) Estado de los principales recursos pesqueros de Colombia-2014. Oficina de Generación del Conocimiento y la Información, Autoridad Nacional de Acuicultura y Pesca-AUNAP, Bogotá, 244 pp.

    Regan, C.T. (1906–1908) Biologia Centrali-Americana, Pisces. London, 203 pp.

    Resley, M.J., Nystrom, M., Yanes-Roca, C., Leber, K.M. & Main, K.L. (2014) Controlled maturation and spawning of captive black snook. World Aquaculture Magazine, 45 (3), 29–34.

    Risso, A. (1810) Ichthyologie de Nice, ou histoire naturelle des poissons du Departement des Alpes Maritimes. F. Schoell, Paris, 454 pp.

    https://doi.org/10.5962/bhl.title.7052

    Rivas, R. (1986) Systematic review of the perciform fishes of the genus Centropomus. Copeia, 1986 (3), 579–611.

    https://doi.org/10.2307/1444940

    Robertson, D.R. & Allen, G.R. (2015) Shorefishes of the Tropical Eastern Pacific: online information system. Version 2.0 Smithsonian Tropical Research Institute, Balboa, Panama. Available from: https://biogeodb.stri.si.edu/sftep/en/pages (accessed 5 May 2020)

    Rohlf, F.J. (2017) TpsDig2 software. Version 2.31. Computer program and documentation. Department of Ecology and 382 Evolution and Anthropology, State University of New York, Stony Brook, New York. Available from: https://life.bio.sunysb.edu/morph/ (accessed 2 March 2020)

    Schulz-Mirbach, T., Heb, M., Metscher, B.D. & Ladich, F. (2013) A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study. BMC Biology, 11 (75), 1–13.

    https://doi.org/10.1186/1741-7007-11-75

    Sheets, H.D. (2014a) MakeFan8. Integrated Morphometrics Package Suite (IMP) 8. Canisius College, New York. Available from: http://www.philadb.com/an-behav/imp/ (accessed 2 May 2020)

    Sheets, H.D. (2014b) CoordGen8. Integrated Morphometrics Package Suite (IMP) 8. Canisius College, New York. Available from: http://www.philadb.com/an-behav/imp/ (accessed 2 May 2020)

    Sheets, H.D. (2014c) Semiland8. Integrated Morphometrics Package Suite (IMP) 8. Canisius College, New York. Available from: http://www.philadb.com/an-behav/imp/ (accessed 2 May 2020)

    Sheets, H.D. (2014d) PCAGen8. Integrated Morphometrics Package Suite (IMP) 8. Canisius College, New York. Available from: http://www.philadb.com/an-behav/imp/ (accessed 2 May 2020)

    Sheets, H.D. (2014e) TwoGroup8. Integrated Morphometrics Package Suite (IMP) 8. Canisius College, New York. Available from: http://www.philadb.com/an-behav/imp/ (accessed 2 May 2020)

    Sheets, H.D. (2014f) CVAGen8. Integrated Morphometrics Package Suite (IMP) 8. Canisius College, New York. Available from: http://www.philadb.com/an-behav/imp/ (accessed 2 May 2020)

    Stecher, G., Tamura, K. & Kumar, S. (2020) Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution, 37 (4), 1237–1239.

    https://doi.org/10.1093/molbev/msz312

    Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22 (22), 4673–4680.

    https://doi.org/10.1093/nar/22.22.4673

    Tringali, M.D., Bert, T.M. & Seyoum, S. (1999a) Genetic identification of Centropomine fishes. Transactions of the American Fisheries Society, 128 (3), 446-458.

    https://doi.org/10.1577/1548-8659(1999)128<0446:GIOCF>2.0.CO;2

    Tringali, M.D., Bert, T.M., Seyoum, S., Bermingham, E. & Bartolacci, D. (1999b) Molecular phylogenetics and ecological diversification of the transisthmian fish genus Centropomus (Perciformes: Centropomidae). Molecular Phylogenetics and Evolution, 13 (1), 193–207.

    https://doi.org/10.1006/mpev.1999.0624

    Van der Heiden, A.M., Ruiz Guerrero, M. & Abreu Grobois, A. (1998) Genética y taxonomía de los robalos (Centropomus spp.) del golfo de California, México. Informe final SNIB-CONABIO proyecto No. G008. México. Available from: http://www.conabio.gob.mx/institucion/proyectos/resultados/InfG008.pdf (accessed 8 January 2020)

    Walford, L.A. (1937) Marine game fishes of the Pacific coast from Alaska to the Equator. University of California Press, Berkeley, California, 205 pp.