Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-01-20
Page range: 1–27
Abstract views: 256
PDF downloaded: 139

Laminatubus (Serpulidae, Annelida) from eastern Pacific hydrothermal vents and methane seeps, with description of two new species

Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla CA, 92093-0202, USA
Australian Museum Research Institute, Australian Museum, 1 William Street Sydney NSW 2010 Australia Department of Biological Sciences, Macquarie University, North Ryde NSW 2109 Australia
Annelida Cold seeps Sabellida Neovermilia Hyalopomatus

Abstract

The bathyal serpulid Laminatubus alvini ten Hove & Zibrowius, 1986 was described from the periphery of hydrothermal vents of the Galapagos Rift and has been recorded from other vent communities of the East Pacific Rise (EPR). Here we assessed the biodiversity of serpulids collected from eastern Pacific hydrothermal vents and methane seeps using DNA sequences and morphology. Laminatubus alvini showed little genetic variation over a wide geographic range from the Alarcon Rise vents in southern Gulf of California (~23°N), to at least a point at 38°S on the EPR. Specimens from several methane seeps off Costa Rica and the Gulf of California (Mexico) differed markedly from those of Laminatubus alvini on DNA sequence data and in having seven thoracic chaetigers and lacking Spirobranchus-type special collar chaetae, thus fitting the diagnosis of Neovermilia. However, phylogenetic analysis of molecular data showed that L. alvini and the seep specimens form a well-supported clade. Moreover, among the seep specimens there was minimally a ~7% distance in mitochondrial cytochrome b sequences between a shallow-water (1000 m) seep clade restricted to Costa Rica and a deep-water clade (1800 m) from Costa Rica to Gulf of California. We describe the seep taxa here as morphologically indistinguishable L. paulbrooksi n. sp. and L. joycebrooksae n. sp.

 

References

  1. Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.

    https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Benham, W.B. (1927) Polychaeta. British Antarctic ‘Terra Nova’ Expedition Natural History Reports, Zoology, 7, 47–182.

    Borda, E., Kudenov, J.D., Chevaldonné, P., Desbruyères, D., Blake, J.A., Fabri, M.-C., Hourdez, S., Shank, T.M., Wilson, N.G., Pleijel, F., Schulze, A. & Rouse, G.W. (2013) Cryptic species of Archinome (Annelida: Amphinomidae) from hydrothermal vents and cold seeps. Proceedings of The Royal Society of London, Series B, Biological Sciences, 280, 20131876.

    https://doi.org/10.1098/rspb.2013.1876

    Brown, A.C., Rouse, G.W., Hutchings, P. & Colgan, D. (1999) Assessing the usefulness of histone H3, U2 snRNA and 28S rDNA in analyses of polychaete relationships. Australian Journal of Zoology, 47 (5), 499–516.

    https://doi.org/10.1071/ZO99026

    Burnette, A.B., Struck, T.H. & Halanych, K.M. (2005) Holopelagic Poeobius meseres (“Poeobiidae,” Annelida) is derived from benthic flabelligerid worms. The Biological Bulletin, 208, 213–220.

    https://doi.org/10.2307/3593153

    Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.

    https://doi.org/10.1038/nmeth.2109

    Day, J.H. (1961) The polychaete fauna of South Africa, Part 6. Sedentary species dredged off Cape coasts with a few new records from the shore. Journal of the Linnean Society of London, Zoology, 44, 463–560.

    https://doi.org/10.1111/j.1096-3642.1961.tb01623.x

    Day, J.H. (1967) A Monograph on the Polychaeta of Southern Africa. Part 2. Sedentaria. British Museum (Natural History), London, pp. 459–878.

    https://doi.org/10.5962/bhl.title.8596

    Desbruyères, D. & Segonzac, M. (1997) Handbook of deep-sea hydrothermal vent fauna. IFREMER, Brest, 279 pp.

    Desbruyères, D., Segonzac, M. & Bright, M. (2006) Handbook of deep-sea hydrothermal vent fauna. Denisia 18. Biologiezentrum der Oberösterreichischen Landesmuseen, Linz, 544 pp.

    Dew, B. (1959) Serpulidae (Polychaeta) from Australia. Records of the Australian Museum, 25, 19–56.

    https://doi.org/10.3853/j.0067-1975.25.1959.654

    Eilertsen, M.H., Kongsrud, J.A., Alvestad, T., Stiller, J., Rouse, G.W. & Rapp, H.T. (2017) Do ampharetids take sedimented steps between vents to seeps? Phylogeny and habitat-use of Ampharetidae (Annelida, Terebelliformia) in chemosynthesis-based ecosystems. BMC Evolutionary Biology, 17, 222.

    https://doi.org/10.1186/s12862-017-1065-1

    Giribet, G., Carranza, S., Baguna, J., Riutort, M. & Ribera, C. (1996) First molecular evidence for the existence of a Tardigrada plus Arthropoda clade. Molecular Biology and Evolution, 13, 76–84.

    https://doi.org/10.1093/oxfordjournals.molbev.a025573

    Goffredi, S.K., Johnson, S., Tunnicliffe, V., Caress, D., Clague, D., Escobar, E., Lundsten, L., Paduan, J.B., Rouse, G.W., Salcedo, D.L., Soto, L.A., Spelz-Madero, R., Zierenberg, R. & Vrijenhoek, R. (2017) Hydrothermal vent fields discovered in the southern Gulf of California clarify role of habitat in augmenting regional diversity. Proceedings of the Royal Society B: Biological Sciences, 284, 20170817.

    https://doi.org/10.1098/rspb.2017.0817

    Goffredi, S.K., Tilic, E., Mullin, S.W., Dawson, K.S., Keller, A., Lee, R.W., Wu, F., Levin, L.A., Rouse, G.W., Cordes, E.E. & Orphan, V.J. (2020) Methanotrophic bacterial symbionts fuel dense populations of deep-sea feather duster worms (Sabellida, Annelida) and extend the spatial influence of methane seepage. Science Advances, 6, eaay8562.

    https://doi.org/10.1126/sciadv.aay8562

    Halt, M.N., Kupriyanova, E.K., Cooper, S.J.B. & Rouse, G.W. (2009) Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida, Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebrate Systematics, 23, 205–222.

    https://doi.org/10.1071/IS09003

    Hartman, O. (1960) Systematic account of some marine invertebrate animals from the deep basins off southern California. Allan Hancock Pacific Expeditions, 22, 69–216.

    Hatch, A.S., Liew, H., Hourdez, S. & Rouse, G.W. (2020) Hungry scaleworms: Phylogenetics of Peinaleopolynoe (Polynoidae, Annelida), with four new species. ZooKeys, 932, 27–74.

    https://doi.org/10.3897/zookeys.932.48532

    Hey, R.N., Massoth, G.J., Vrijenhoek, R.C., Rona, P.A., Lupton, J. & Butterfield, D.A. (2006) Hydrothermal vent geology and biology at Earth’s fastest spreading rates. Marine Geophysical Researches, 27, 137–153.

    https://doi.org/10.1007/s11001-005-1887-x

    Hurtado, L.A., Lutz, R.A. & Vrijenhoek, R.C. (2004) Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents. Molecular Ecology, 13, 2603–2615.

    https://doi.org/10.1111/j.1365-294X.2004.02287.x

    Johnson, S.B., Won, Y.-J., Harvey, J.B.J. & Vrijenhoek, R.C. (2013) A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents. BMC Evolutionary Biology, 13, 21.

    https://doi.org/10.1186/1471-2148-13-21

    Jones, M.L. (1981) Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galápagos Rift geothermal vents (Pogonophora). Proceedings of the Biological Society of Washington, 93, 1295–1313.

    Juniper, S.K. & Sibuet, M. (1987) Cold seep benthic communities in Japan subduction zones: spatial organisation, , trophic strategies and evidence for temporal evolution. Marine Ecology Progress Series, 40, 115–126.

    https://doi.org/10.3354/meps040115

    Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    https://doi.org/10.1093/molbev/mst010

    Kupriyanova, E., Macdonald, T.A. & Rouse, G.W. (2006) Phylogenetic relationships within Serpulidae (Sabellida, Annelida) inferred from molecular and morphological data. Zoologica Scripta, 35, 421–439.

    https://doi.org/10.1111/j.1463-6409.2006.00244.x

    Kupriyanova, E.K. (1993) Deep-water Serpulidae (Annelida, Polychaeta) from the Kurile-Kamchatka trench: 1. Genus Hyalopomatus. Zoologicheskii Zhurnal, 72, 145–152.

    Kupriyanova, E.K. & Nishi, E. (2010) Serpulidae (Annelida, Polychaeta) from Patton-Murray Seamounts, Gulf of Alaska, North Pacific Ocean. Zootaxa, 2665 (1), 51–68.

    https://doi.org/10.11646/zootaxa.2665.1.3

    Kupriyanova, E.K., Nishi, E., Kawato, M. & Fujiwara, Y. (2010) New records of Serpulidae (Annelida, Polychaeta) from hydrothermal vents of North Fiji, Pacific Ocean. Zootaxa, 2389 (1), 57–68.

    https://doi.org/10.11646/zootaxa.2389.1.3

    Leigh, J.W. & Bryant, D. (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116.

    https://doi.org/10.1111/2041-210X.12410

    Levin, L.A. (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology, 43, 1–46.

    https://doi.org/10.1201/9781420037449.ch1

    Levin, L.A., Orphan, V.J., Rouse, G.W., Rathburn, A.E., Ussler III, W., Cook, G.S., Goffredi, S.K., Perez, E.M., Waren, A., Grupe, B., Chadwick, G. & Strickrott, B. (2012) A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. Proceedings of the Royal Society B: Biological Sciences, 279, 2580–2588.

    https://doi.org/10.1098/rspb.2012.0205

    López-González, P.J., Rodríguez, E., Gili, J.M. & Segonzac, M. (2003) New records on sea anemones (Anthozoa: Actiniaria) from hydrothermal vents and cold seeps. Zoologische Verhandelingen, 345, 215–244.

    McCowin, M.F. & Rouse, G.W. (2018a) Phylogeny of hydrothermal vent Iphionidae (Aphroditiformia, Annelida), with description of a new species. ZooKeys, 779, 89–107.

    https://doi.org/10.3897/zookeys.779.24781

    McCowin, M.F. & Rouse, G.W. (2018b) A new Lamellibrachia species and confirmed range extension for Lamellibrachia barhami (Siboglinidae, Annelida) from Costa Rica methane seeps. Zootaxa, 4504 (1), 1–22.

    https://doi.org/10.11646/zootaxa.4504.1.1

    McCowin, M.F., Feehery, C. & Rouse, G.W. (2020) Spanning the depths and depth-stratified: Three new species of Bathymodiolus (Bivalvia, Mytilidae) at seeps along the Costa Rica margin. Deep-Sea Research Part I: Oceanographic Research Papers, 164, 103322.

    https://doi.org/10.1016/j.dsr.2020.103322

    Micheli, F., Peterson, C.H., Mullineaux, L.S., Fisher, C.R., Mills, S.W., Sancho, G., Johnson, G.A. & Lenihan, H.S. (2002) Predation structures communities at deep-sea hydrothermal vents. Ecological Monographs, 72, 365–382.

    https://doi.org/10.1890/0012-9615(2002)072[0365:PSCADS]2.0.CO;2

    Mullineaux, L. & Manahan, D. (1998) Deep-sea diaspora. Oceanus, 41, 6–9.

    Mullineaux, L.S., Mills, S.W. & Goldman, E. (1998) Recruitment variation during a pilot colonization study of hydrothermal vents (9°50′N, East Pacific Rise). Deep Sea Research Part II: Topical Studies in Oceanography 45, 441–464.

    https://doi.org/10.1016/S0967-0645(97)00045-3

    Mullineaux, L.S., Peterson, C.H., Micheli, F. & Mills, S.W. (2003) Successional mechanism varies along a gradient in hydrothermal fluid flux at deep-sea vents. Ecological Monographs, 73, 523–542.

    https://doi.org/10.1890/02-0674

    Mullineaux, L.S., Micheli, F., Peterson, C.H., Lenihan, H.S. & Markus, N. (2009) Imprint of past environmental regimes on structure and succession of a deep-sea hydrothermal vent community. Oecologia, 161, 387–400.

    https://doi.org/10.1007/s00442-009-1390-1

    Nøren, M. & Jondelius, U. (2002) The phylogenetic position of the Prolecithophora (Rhabditophora, ‘Platyhelminthes’). Zoologica Scripta, 31, 403–414.

    https://doi.org/10.1046/j.1463-6409.2002.00082.x

    Nygren, A. (2013) Cryptic polychaete diversity: a review. Zoologica Scripta, 43, 172–183.

    https://doi.org/10.1111/zsc.12044

    Olu, K., Duperret, A., Sibuet, M. & Foucher, J.P. (1996) Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns. Marine Ecology Progress Series, 132, 109–125.

    https://doi.org/10.3354/meps132109

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877.

    https://doi.org/10.1111/j.1365-294X.2011.05239.x

    Segonzac, M., Hekinian, R., Auzende, J.M. & Francheteau, J. (1997) Recently discovered animal communities on the South East Pacific Rise (17-19 S and the Eastern Microplaque Region). Cahiers de Biologie Marine , 38, 140–141.

    Sibuet, M. & Olu, K. (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins Deep Sea Research Part II: Tropical Studies in Oceanography, 45, 517–567.

    https://doi.org/10.1016/S0967-0645(97)00074-X

    Stamatakis, A. (2014) RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

    https://doi.org/10.1093/bioinformatics/btu033

    Stiller, J., Rousset, V., Pleijel, F., Chevaldonné, P., Vrijenhoek, R.C. & Rouse, G.W. (2013) Phylogeny, biogeography and systematics of hydrothermal vent and methane seep Amphisamytha (Ampharetidae, Annelida), with descriptions of three new species. Systematics and Biodiversity, 11, 35–65.

    https://doi.org/10.1080/14772000.2013.772925

    Swofford, D.L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. [program]

    ten Hove, H.A. & Zibrowius, H. (1986) Laminatubus alvini gen. et sp. n. and Protis hydrothermica sp.n. (Polychaeta, Serpulidae) from the bathyal hydrothermal vent communities in the eastern Pacific. Zoologica Scripta, 15, 21–31.

    https://doi.org/10.1111/j.1463-6409.1986.tb00205.x

    ten Hove, H.A. & Kupriyanova, E.K. (2009) Taxonomy of Serpulidae (Annelida, Polychaeta): The state of affairs. Zootaxa, 2036 (1), 1–126.

    https://doi.org/10.11646/zootaxa.2036.1.1

    Thurber, A.R., Jones, W.J. & Schnabel, K. (2011) Dancing for food in the deep sea: Bacterial farming by a new species of Yeti crab. PLoS ONE, 6, e26243.

    https://doi.org/10.1371/journal.pone.0026243

    Tunnicliffe, V. (1992) The nature and origin of the modern hydrothermal vent fauna. Palaios, 7, 338–350.

    https://doi.org/10.2307/3514820

    Tunnicliffe, V., McArthur, A.G. & McHugh, D. (1998) A biogeographical perspective of the deep-sea hydrothermal vent fauna. Advances in Marine Biology, 34, 353–442.

    https://doi.org/10.1016/S0065-2881(08)60213-8

    Vinn, O., ten Hove, H.A. & Mutvei, H. (2008) On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology, 51, 295–301.

    https://doi.org/10.1111/j.1475-4983.2008.00763.x

    Vinn, O., Kupriyanova, E.K. & Kiel, S. (2012) Systematics of serpulid tubeworms (Annelida, Polychaeta) from Cretaceous and Cenozoic hydrocarbon-seep deposits in North America and Europe. Neues Jahrbuch für Geologie und Palaontologie-Abhandlungen, 265, 315–325.

    https://doi.org/10.1127/0077-7749/2012/0271

    Webb, M. (1969) Lamellibrachia barhami, gen. nov., sp. nov. (Pogonophora), from the northeast Pacific. Bulletin of Marine Science, 19, 18–47.

    Zhang, D.S., Zhou, Y.D., Wang, C.S. & Rouse, G.W. (2017) A new species of Ophryotrocha (Annelida: Eunicida: Dorvilleidae) from hydrothermal vents on the Southwest Indian Ridge. ZooKeys, 687, 13046.

    https://doi.org/10.3897/zookeys.687.13046