Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-12-01
Page range: 97–108
Abstract views: 87
PDF downloaded: 7

Morphology of testate amoeba Difflugia australis (Playfair, 1918) Gautier-Lièvre et Thomas, 1958 from a subtropical reservoir (southeast China)

Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. University of Chinese Academy of Sciences, Beijing 100049, China.
Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. University of Chinese Academy of Sciences, Beijing 100049, China.
Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. University of Chinese Academy of Sciences, Beijing 100049, China.
M V. Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia. A.N. Severtsov Institute of Ecology and Evolution, Russsian Academy of Sciences, Leninskiy Ave. 33, 117071, Moscow, Russia.
Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Jun Yang, Aquatic EcoHealth Group, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
Difflugia australis Arcellinida testate amoebae freshwater Shidou Reservoir China

Abstract

Difflugia australis, first described by Playfair (1918), has a unique morphotype. However, in the absence of morphometric data, it has not yet been reliably classified within the largest testate amoeba genus Difflugia. In this study D. australis collected from a subtropical reservoir in southeast China was investigated by means of light and scanning electron microscopy. Basing on biometrical data, we provide an improved diagnosis of this little known species. Difflugia australis is different from other similar congeners (i.e., D. bacillariarum Perty, 1849 and D. elegans Penard, 1890) mainly by the combination of the following features: the shell is broadly ovate, with rounded dome and convex sides converging down to a very short distance from the aperture and diverging suddenly into a short rim (collar). It is usually more or less asymmetrical, with one side being more dilated than the other. The shell surface is slightly smooth, composed of flat siliceous plates of irregular shape and size, mixed with fine grains; microbial spores of comparable forms are spread on the shell surface; particles are often interspersed with a network of organic cement with unique mesh pattern; one (sometimes two) slanting spine-like posterior end of the shell is variable in form; collar is mainly formed by small plates of equal size. The dimensions of the shell are: total shell length 88–106 µm; shell width 53–88 µm; aperture diameter 19–28 µm; collar height 3–6 µm; spine length 3‒23 μm. The size frequency distributions of both total shell length and shell width indicate that it is a size-monomorphic species with low variability.

 

References

  1. Adl, S.M., Bass, D., Lane, C.E., Lukeš, J., Schoch, C.L., Smirnov, A., Agatha, S., Berney, C., Brown, M.W., Burki, F., Cárdenas, P., Čepička, I., Chistyakova, L., del Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A.A., Hoppenrath, M., James, T.Y., Karnkowska, A., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D.J.G., Lara, E., Le Gall, L., Lynn, D.H., Mann, D.G., Massana, R., Mitchell, E.A.D., Morrow, C., Park, J.S., Pawlowski, J.W., Powell, M.J., Richter, D.J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F.W., Torruella, G., Youssef, N., Zlatogursky, V. & Zhang, Q. (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. Journal of Eukaryotic Microbiology, 66 (1), 4‒119.

    https://doi.org/10.1111/jeu.12691

    Amesbury, M.J., Swindles, G.T., Bobrov, A., Charman, D.J., Holden, J., Lamentowicz, M., Mallon, G., Mazei, Y., Mitchell, E.A.D., Payne, R.J., Roland, T.P., Turner, T.E. & Warner, B.G. (2016) Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quaternary Science Reviews, 152, 132‒151.

    https://doi.org/10.1016/j.quascirev.2016.09.024

    Armynot du Châtelet, E., Bernard, N., Delaine, M., Potdevin, J.L. & Gilbert, D. (2015) The mineral composition of the tests of ‘testate amoebae’ (Amoebozoa, Arcellinida): the relative importance of grain availability and grain selection. Revue de Micropaléontologie, 58 (3), 141‒154.

    https://doi.org/10.1016/j.revmic.2015.05.001

    Armynot du Châtelet, E., Guillot, F., Recourt, P., Ventalon, S. & Tribovillard, N. (2010) Influence of sediment grain size and mineralogy on testate amoebae test construction. Comptes Rendus de Géosciences, 342 (9), 710–717.

    https://doi.org/10.1016/j.crte.2010.05.002

    Armynot du Châtelet, E., Noiriel, C. & Delaine, M. (2013). Three-dimensional morphological and mineralogical characterization of testate amoebae. Microscopy and Microanalysis, 19 (6), 1511‒1522.

    https://doi.org/10.1017/S1431927613013226

    Bobrov, A. & Mazei, Y. (2004) Morphological variability of testate amoebae (Rhizopoda: Testacealobosea: Testaceafilosea) in natural populations. Acta Protozoologica, 43 (2), 133‒146.

    Chardez, D. (1978) Notes thécamoebologiques. Revue Verviétoise d’ Histoire Naturelle, 35 (1‒3), 6–9.

    Charman, D.J. (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quaternary Science Reviews, 20 (16‒17), 1753‒1764.

    https://doi.org/10.1016/S0277-3791(01)00036-1

    Fialkiewicz-Koziel, B., Smieja-Krol, B. & Ostrovnaya, T.M., Frontasyeva, M., Sieminska, A., Lamentowicz, M. (2015). Peatland microbial communities as indicators of the extreme atmospheric dust deposition. Water, Air, and Soil Pollution, 226, 97.

    https://doi.org/10.1007/s11270-015-2338-1

    Gauthier-Lièvre, L. & Thomas, R. (1958) Les genres Difflugia, Pentagonia, Maghrebia et Hoogenraadia (Rhizopodes testacés) en Afrique. Archiv Für Protistenkunde, 103, 4203‒4210.

    Gomaa, F., Lahr, D.J., Todorov, M., Li, J. & Lara, E. (2017) A contribution to the phylogeny of agglutinating Arcellinida (Amoebozoa) based on SSU rRNA gene sequences. European Journal of Protistology, 59, 99‒107.

    https://doi.org/10.1016/j.ejop.2017.03.005

    Gomaa, F., Todorov, M., Heger, T.J., Mitchell, E.A.D & Lara, E. (2012). SSU rRNA phylogeny of Arcellinida (Amoebozoa) reveals that the largest Arcellinid genus, Difflugia Leclerc 1815, is not monophyletic. Protist, 163, 389‒399.

    https://doi.org/10.1016/j.protis.2011.12.001

    Gomaa, F., Yang, J., Mitchell, E.A.D, Zhang, W.J., Yu, Z., Todorov, M. & Lara, E. (2015) Morphological and molecular diversification of Asian endemic Difflugia tuberspinifera (Amoebozoa, Arcellinida): a case of fast morphological evolution in protists? Protist, 166 (1), 122‒130.

    https://doi.org/10.1016/j.protis.2014.11.004

    Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1), 1–9. [http://palaeo-electronica.org/2001_1/k2/issue1_01.htm]

    Ju, L.H., Yang, J., Liu, L.M. & Wilkinson, D.M. (2014) Diversity and distribution of freshwater testate amoebae (Protozoa) along latitudinal and trophic gradients in China. Microbial Ecology, 68, 657–670.

    https://doi.org/10.1007/s00248-014-0442-1

    Kosakyan, A., Gomaa, F., Lara, E. & Lahr, D.J. (2016) Current and future perspectives on the systematics, taxonomy and nomenclature of testate amoebae. European Journal of Protistology, 55 (Part B), 105‒117.

    https://doi.org/10.1016/j.ejop.2016.02.001

    Lahr, D.J.G., Kosakyan, A., Lara, E., Mitchell, E.A.D., Morais, L., Porfirio-Sousa, A.L., Ribeiro, G.M., Tice, A.K., Pánek, T., Kang, S. & Brown, M.W. (2019) Phylogenomics and morphological reconstruction of Arcellinida testate amoebae highlight diversity of microbial eukaryotes in the neoproterozoic. Current Biology, 29 (6), 991‒1001.

    https://doi.org/10.1016/j.cub.2019.01.078

    Mazei, Y. & Warren, A. (2012) A survey of the testate amoeba genus Difflugia Leclerc, 1815 based on specimens in the E. Penard and C.G. Ogden collections of the Natural History Museum, London. Part 1: Species with shells that are pointed aborally and/or have aboral protuberances. Protistology, 7 (3), 121‒171. [http://protistology.ifmo.ru]

    Mazei, Y. & Warren, A. (2014) A survey of the testate amoeba genus Difflugia Leclerc, 1815 based on specimens in the E. Penard and C.G. Ogden collections of the Natural History Museum, London. Part 2: Species with shells that are pyriform or elongate. Protistology, 8 (4), 133‒171. [http://protistology.ifmo.ru]

    Mazei, Y. & Warren, A. (2015) A survey of the testate amoeba genus Difflugia Leclerc, 1815 based on specimens in the E. Penard and C.G. Ogden collections of the Natural History Museum, London. Part 3: Species with shells that are spherical or ovoid. Protistology, 9 (1), 3–49. [http://protistology.ifmo.ru]

    Mazei, Y., Chernyshov, V., Tsyganov, A. & Payne, R. (2015) Testing the effect of refrigerated storage on testate amoeba samples. Microbial Ecology, 70, 861–864.

    https://doi.org/10.1007/s00248-015-0628-1

    Meisterfeld, R. & Mitchell, E.A.D. (2008) Difflugia Leclerc 1815, Tree of life web project. Available from: http://tolweb.org/Difflugia/124487 (accessed 21 September 2019)

    Mitchell, E.A.D., Charman, D.J. & Warner, B.G. (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodiversity and Conservation, 17 (9), 2115‒2137.

    https://doi.org/10.1007/s10531-007-9221-3

    Ndayishimiye, J.C., Ju, L.H., Li, H.K., Yang, X.D., Liu, Z.W. & Yang, J. (2019) Temperature transfer functions based on freshwater testate amoebae from China. European Journal of Protistology, 69, 152–164.

    https://doi.org/10.1016/j.ejop.2019.03.003

    Ndayishimiye, J.C., Nyirabuhoro, P., Wang, Q., Yang, X. & Yang, J. (2020) Effects of natural and anthropogenic changes on testate amoebae communities in an alpine lake over the past 2500 years. Science of the Total Environment, 721, 137684.

    https://doi.org/10.1016/j.scitotenv.2020.137684

    Nikolaev, S.I., Mitchell, E.A., Petrov, N.B., Berney, C., Fahrni, J. & Pawlowski, J. (2005) The testate lobose amoebae (order Arcellinida Kent, 1880) finally find their home within Amoebozoa. Protist, 156, 191‒202.

    https://doi.org/10.1016/j.protis.2005.03.002

    Nyirabuhoro, P., Liu, M., Xiao, P., Liu, L.M., Yu, Z., Wang, L. & Yang, J. (2020) Seasonal variability of conditionally rare taxa in the water column bacterioplankton community of subtropical reservoirs in China. Microbial Ecology, 80, 14–26.

    https://doi.org/10.1007/s00248-019-01458-9

    Ogden, C.G. & Ellison, R.L. (1988) The value of the organic cement matrix in the identification of the shells of fossil testate amoebae. Journal of Micropalaeontology, 7 (2), 233‒240.

    https://doi.org/10.1144/jm.7.2.233

    Ogden, C.G. & Hedley, R.H. (1980) An Atlas of Freshwater Testate Amoebae. British Museum (Natural History) and Oxford University Press, London, 222 pp.

    https://doi.org/10.1097/00010694-198009000-00013

    Patterson, R.T. & Kumar, A. (2002) A review of current testate rhizopod (thecamoebian) research in Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 180 (1‒3), 225‒251.

    https://doi.org/10.1016/S0031-0182(01)00430-8

    Patterson, R.T., Baker, T. & Burbidge, S.M. (1996) Arcellaceans (thecamoebians) as proxies of arsenic and mercury contamination in northeastern Ontario lakes. The Journal of Foraminiferal Research, 26 (2), 172‒183.

    https://doi.org/10.2113/gsjfr.26.2.172

    Playfair, G.I. (1918) Rhizopods of Sydney and Lismore. Proceedings of the Linnean Society of New South Wales, 42, 633‒675.

    https://doi.org/10.5962/bhl.part.4865

    Ruggiero, A., Grattepanche, J.D., Weiner, A.K. & Katz, L.A. (2020) High diversity of testate amoebae (Amoebozoa, Arcellinida) detected by HTS analyses in a New England fen using newly designed taxon-specific primers. Journal of Eukaryotic Microbiology, 67 (4) 450‒462.

    https://doi.org/10.1111/jeu.12794

    Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671‒675.

    https://doi.org/10.1038/nmeth.2089

    Siemensma, F.J. (2019) Microworld, world of amoeboid organisms. World-wide electronic publication, Kortenhoef, the Netherlands. Available from: https://www.arcella.nl (accessed 2 May 2019)

    Swindles, G.T., Roland, T.P., Amesbury, M.J., Lamentowicz, M., McKeown, M.M., Sim, T.G., Fewster, R.E. & Mitchell, E.A.D. (2020) Quantifying the effect of testate amoeba decomposition on peat-based water-table reconstructions. European Journal of Protistology, 74, 125693.

    https://doi.org/10.1016/j.ejop.2020.125693

    Szmytkiewicz, A. & Zalewska, T. (2014) Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the Outer Puck Bay (Baltic Sea). Oceanologia, 56 (1), 85‒106.

    https://doi.org/10.5697/oc.56-1.085

    Todorov, M. & Bankov, N. (2019) An Atlas of Sphagnum-Dwelling Testate Amoebae in Bulgaria. Pensoft Publishers, Sofia, 287 pp.

    https://doi.org/10.3897/ab.e38685

    Wanner, M. (1999) A review on the variability of testate amoebae: methodological approaches, environmental influences and taxonomical implications. Acta Protozoologica, 38 (1), 15‒29.

    Yang, J. & Shen, Y. (2005) Morphology, biometry and distribution of Difflugia biwae Kawamura, 1918 (Protozoa: Rhizopoda). Acta Protozoologica, 44, 103–111.

    Yang, J., Beyens, L., Shen, Y.F. & Feng, W.S. (2004) Redescription of Difflugia tuberspinifera Hu, Shen, Gu et Gong, 1997 (Protozoa: Rhizopoda: Arcellinida: Difflugiidae) from China. Acta Protozoologica, 43, 281–289.

    Yang, J., Lv, H., Yang, J., Liu, L., Yu, X. & Chen, H. (2016) Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. Science of the Total Environment, 557‒558, 445‒452.

    https://doi.org/10.1016/j.scitotenv.2016.03.094

    Yang, J., Meisterfeld, R., Zhang, W.J. & Shen, Y.F. (2005a) Difflugia mulanensis nov. spec. (Protozoa, Rhizopoda), a freshwater testate amoeba from Lake Mulan, China. European Journal of Protistology, 41, 269–276.

    https://doi.org/10.1016/j.ejop.2005.05.006

    Yang, J., Shen, Y. & Feng, W. (2005b) Morphological studies on two new records of the genus Difflugia from China (Arcellinida, Difflugiidae). Acta Zootaxonomica Sinica, 30, 52‒56.

    Yang, J., Smith, H.G., Sherratt, T.N. & Wilkinson, D.M. (2010) Is there a size limit for cosmopolitan distribution in free-living microorganisms? A biogeographical analysis of testate amoebae from polar areas. Microbial Ecology, 59, 635–645.

    https://doi.org/10.1007/s00248-009-9615-8

    Yang, J.R., Lv, H., Isabwe, A., Liu, L., Yu, X., Chen, H. & Yang, J. (2017) Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research, 120, 52‒63.

    https://doi.org/10.1016/j.watres.2017.04.062