Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2020-09-11

Molecular phylogeny of Asian pipesnakes, genus Cylindrophis Wagler, 1828 (Squamata: Cylindrophiidae), with the description of a new species from Myanmar

1Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA Current affiliation: Department of Biological Sciences, 206 Boyden Hall, Rutgers University-Newark, 195 University Avenue, Newark, New Jersey 07102, USA
Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA
Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720, USA
Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences, Cibinong, Indonesia
Department of Vertebrate Zoology, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany; and Department of Biology, Victor Valley College, 18422 Bear Valley Road, Victorville, California 92395, USA
Department of Vertebrate Zoology, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany; and Department of Biology, Victor Valley College, 18422 Bear Valley Road, Victorville, California 92395, USA
Department of Zoology and Geology, Naturkundemuseum Paderborn, Im Schloßpark 9, 33104 Paderborn, Germany
Reptilia Chindwin River Irrawaddy River phylogenetics Serpentes species complex systematics taxonomy

Abstract

Cylindrophis is a genus of secretive, semi-fossorial, non-venomous snakes comprising 14 species, characterized by a generally cylindrical body, uniform scales (with barely enlarged ventrals), and vestiges of pelvic and limb bones, the latter terminating in a claw lateral to the vent. We reconstructed a concatenated molecular phylogeny of seven taxa of Cylindrophis taxa based on one nuclear (R35) and two mitochondrial (16S, ND2) genes. Analyses recovered the Sri Lankan endemic C. maculatus as sister to all other sampled Cylindrophis. The mainland Southeast Asian species C. burmanus and C. jodiae form successive sister lineages to a monophyletic Wallacean island group containing C. boulengeri, C. isolepis, and C. yamdena. We also describe a new species of Cylindrophis, morphologically similar to C. burmanus, from Kachin State in northern Myanmar. Cylindrophis slowinskii sp. nov. is distinguished from all congeners by the following combination of characters: 19 dorsal scale rows at midbody, 216–220 ventrals, eight subcaudals, a dark venter with > 60 very narrow diffuse pale blotches, and a pale bar running along the posterior border of the prefrontals. In our phylogeny, the new species is strongly supported as the sister species of C. burmanus. It is the 15th currently recognised species in the genus, and the fourth from mainland Southeast Asia.

 

References

  1. Ahl, E. (1933) Ergebnisse der Celebes- und Halmaheira-Expedition Heinrich 1930−32. 1. Reptilien und Amphibien. Mitteilungen aus dem Zoologischen Museum in Berlin, 19, 577−583.

    Amarasinghe, A.A.T., Campbell, P.D., Hallermann, J., Sidik, I., Supriatna, J. & Ineich, I. (2015) Two new species of the genus Cylindrophis Wagler, 1828 (Squamata: Cylindrophiidae) from Southeast Asia. Amphibian & Reptile Conservation, 9 (1), 34–51.

    Auffenberg, W. (1980) The herpetofauna of Komodo, with notes on adjacent areas. Bulletin of the Florida State Museum, Biological Sciences, 25 (2), 39–156.

    Bauer, A.M. (2003) Descriptions of seven new Cyrtodactylus (Squamata: Gekkonidae) with a key to the species of Myanmar (Burma). Proceedings of the California Academy of Sciences, 54 (25), 463–498.

    Blanford, W.T. (1881) On a collection of reptiles and frogs chiefly from Singapore. Proceedings of the Zoological Society of London, 49 (1), 215–227.

    https://doi.org/10.1111/j.1096-3642.1881.tb01281.x

    Bouckaert, R.R. & Drummond, A.J. (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17 (1), 42.

    https://doi.org/10.1186/s12862-017-0890-6

    Bouckaert, R.R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10 (4), e1003537.

    https://doi.org/10.1371/journal.pcbi.1003537

    Boulenger, G.A. (1893) Catalogue of the Snakes in the British Museum (Natural History). Vol. I. Typhlopidae, Glauconiidae, Boidae, Ilysiidae, Uropletidae, Xenopeltidae, and Colubridae Aglyphae, part. Taylor and Francis, London, 476 pp.

    https://doi.org/10.5962/bhl.title.8316

    Boulenger, G.A. (1896) Descriptions of new reptiles and batrachians obtained by Mr. Alfred Everett in Celebes and Jampea. Annals and Magazine of Natural History, Series 6, 18, 62−64.

    https://doi.org/10.1080/00222939608680409

    Boulenger, G.A. (1897) List of the reptiles and batrachians collected by Mr. Alfred Everett in Lombok, Flores, Sumba, and Savu, with descriptions of new species. Annals and Magazine of Natural History, Series 6, 19, 503−509.

    https://doi.org/10.1080/00222939708680570

    Boulenger, G.A. (1920) Descriptions of four new snakes in the collection of the British Museum. Annals and Magazine of Natural History, Series 9, 6, 108−111.

    https://doi.org/10.1080/00222932008632417

    Bruyn, M., de, Stelbrink, B., Morley, R.J., Hall, R., Carvalho, G.R., Cannon, C.H., Bergh, G., van den, Meijaard, E., Metcalfe, I., Boitani, L., Maiorano, L., Shoup, R. & Rintelen, T., von (2014) Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Systematic Biology, 63 (6), 879−901.

    https://doi.org/10.1093/sysbio/syu047

    Burbrink, F.T. & Crother, B.I. (2011) Evolution and taxonomy of snakes. In: Aldridge, R.D. & Sever, D.M. (Eds.), Reproductive Biology and Phylogeny of Snakes. CRC Press, Boca Raton, Florida, pp. 19–53.

    https://doi.org/10.1201/b10879

    Burbrink, F.T., Grazziotin, F.G., Pyron, R.A., Cundall, D., Donnellan, S., Irish, F., Keogh, J.S., Kraus, F., Murphy, R.W., Noonan, B. & Raxworthy, C.J. (2020) Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 63 (3), 502–520.

    https://doi.org/10.1093/sysbio/syz062

    Cadle, J.E., Dessauer, H.C., Gans, C. & Gartside, D.F. (1990) Phylogenetic relationships and molecular evolution in uropeltid snakes (Serpentes: Uropeltidae): allozymes and albumin immunology. Biological Journal of the Linnean Society, 40 (3), 293–320.

    https://doi.org/10.1111/j.1095-8312.1990.tb00541.x

    Cundall, D., Wallach, V. & Rossman, D.A. (1993) The systematic relationships of the snake genus Anomochilus. Zoological Journal of the Linnean Society, 109 (3), 275–299.

    https://doi.org/10.1111/j.1096-3642.1993.tb02536.x

    Cuvier, G.J.L.N.F.D. (1829) Le Règne Animal Distribué d’après son Organisation, pour Servir de Base à l’Histoire Naturelle des Animaux et d’Introduction à l’Anatomie Compareìe. Nouvelle Édition, Revue et Augmentée. Tome 2. Déterville et Crochard, Paris, xv + 406 pp., pls. v-xiii..

    https://doi.org/10.5962/bhl.title.49223

    Das, I. (2015) A Field Guide to the Reptiles of South-East Asia. Bloomsbury Publishing, London, 376 pp.

    Dong, S. & Kumazawa, Y. (2005) Complete mitochondrial DNA sequences of six snakes: phylogenetic relationships and molecular evolution of genomic features. Journal of Molecular Evolution, 61 (1), 12–22.

    https://doi.org/10.1007/s00239-004-0190-9

    Donnelly, M.A. & Crother, B.I. (2003) Joseph Bruno Slowinski 1962–2001. Copeia, 2003 (2), 424–428.

    https://doi.org/10.1643/0045-8511(2003)003[0424:JBS]2.0.CO;2

    Dubey, B., Meganathan, P.R. & Haque, I. (2012) Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae). Molecular Biology Reports, 39 (7), 7403–7412.

    https://doi.org/10.1007/s11033-012-1572-5

    Eo, S.H. & Woody, J.A., de (2010) Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proceedings of the Royal Society B: Biological Sciences, 277 (1700), 3587–3592.

    https://doi.org/10.1098/rspb.2010.0965

    Figueroa, A., McKelvy, A.D., Grismer, L.L., Bell, C.D. & Lailvaux, S.P. (2016) A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS ONE, 11, e0161070.

    https://doi.org/10.1371/journal.pone.0161070

    Fitzinger, L.J.F.J. (1843) Systema Reptilium. Fasciculus primus. Amblyglossae. Braumüller & Seidel, Vindobonae (Vienna), 106 pp.

    https://doi.org/10.5962/bhl.title.4694

    Flower, S.S. (1899) Notes on a second collection of reptiles made in the Malay Peninsula and Siam, from November 1896 to September 1898, with a list of the species recorded from those countries. Proceedings of the Zoological Society of London, 67 (3), 600–697.

    https://doi.org/10.1111/j.1469-7998.1899.tb06880.x

    Fry, B.G., Vidal, N., Norman, J.A., Vonk, F.J., Scheib, H., Ramjan, S.R., Kuruppu, S., Fung, K., Hedges, S.B., Richardson, M.K., Hodgson, W.C., Ignjatovic, V., Summerhayes, R. & Kochva, E. (2006) Early evolution of the venom system in lizards and snakes. Nature, 439 (7076), 584–588.

    https://doi.org/10.1038/nature04328

    Geneious (2020) Geneious 7.1.8. Electronically accessible. Available from: https://www.geneious.com (accessed 17 May 2020)

    Gower, D.J. (2003) Scale microornamentation of uropeltid snakes. Journal of Morphology, 258 (2), 249–268.

    https://doi.org/10.1002/jmor.10147

    Gower, D.J., Vidal, N., Spinks, J.N. & McCarthy, C.J. (2005) The phylogenetic position of Anomochilidae (Reptilia: Serpentes): first evidence from DNA sequences. Journal of Zoological Systematics and Evolutionary Research, 43 (4), 315–320.

    https://doi.org/10.1111/j.1439-0469.2005.00315.x

    Grismer, L.L., Wood, P.L. Jr., Quah, E.S., Thura, M.K., Espinoza, R.E. & Murdoch, M.L. (2019b) A new species of crocodile newt Tylototriton (Caudata: Salamandridae) from northern Myanmar (Burma). Journal of Natural History, 53 (7–8), 475–495.

    https://doi.org/10.1080/00222933.2019.1587534

    Grismer, L.L., Wood, P.L. Jr., Thura, M.K., Win, N.M. & Quah, E.S. (2019a) Two more new species of the Cyrtodactylus pegu-ensis group (Squamata: Gekkonidae) from the fringes of the Ayeyarwady Basin, Myanmar. Zootaxa, 4577 (2), 274–294.

    https://doi.org/10.11646/zootaxa.4577.2.3

    Grismer, L.L., Wood, P.L. Jr., Thura, M.K., Zin, T., Quah, E.S., Murdoch, M.L., Grismer, M.S., Lin, A., Kyaw, H. & Lwin, N. (2018) Twelve new species of Cyrtodactylus Gray (Squamata: Gekkonidae) from isolated limestone habitats in east-central and southern Myanmar demonstrate high localized diversity and unprecedented microendemism. Zoological Journal of the Linnean Society, 182 (4), 862–959.

    https://doi.org/10.1093/zoolinnean/zlx057

    Greene, H.W. (1973) Defensive tail display by snakes and amphisbaenians. Journal of Herpetology, 7 (3), 143–161.

    https://doi.org/10.2307/1563000

    Greene, H.W. (1983) Dietary correlates of the origin and radiation of snakes. American Zoologist, 23 (2), 431–441.

    https://doi.org/10.1093/icb/23.2.431

    Groombridge, B.C. (1979) Variations in morphology of the superficial palate of henophidian snakes and some possible systematic implications. Journal of Natural History, 13 (4), 447–475.

    https://doi.org/10.1080/00222937900770361

    Hall, R. (2013) The palaeogeography of Sundaland and Wallacea since the Late Jurassic. Journal of Limnology, Supplement 2, 72, 1–17.

    https://doi.org/10.4081/jlimnol.2013.s2.e1

    Harrington, S.M. & Reeder, T.W. (2017) Phylogenetic inference and divergence dating of snakes using molecules, morphology, and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121 (2), 379–394.

    https://doi.org/10.1093/biolinnean/blw039

    Hemprich, W. (1820) Grundriss der Naturgeschichte für höhere Lehranstalten. August Rücker, Berlin, 432 pp.

    James, J. (2008) The Snake Charmer: A Life and Death in Pursuit of Knowledge. Hachette UK, London, 288 pp.

    Kieckbusch, M., Mader, F., Kaiser, H. & Mecke, S. (2018) A new species of Cylindrophis Wagler, 1828 (Reptilia: Squamata: Cylindrophiidae) from Boano Island, northern Maluku Province, Indonesia. Zootaxa, 4486 (3), 236–250.

    https://doi.org/10.11646/zootaxa.4486.3.2

    Kieckbusch, M., Mecke, S., Hartmann, L., Ehrmantraut, L., O’Shea, M. & Kaiser, H. (2016) An inconspicuous, conspicuous new species of Asian pipesnake, genus Cylindrophis (Reptilia: Squamata: Cylindrophiidae), from the south coast of Jawa Tengah, Java, Indonesia, and an overview of the tangled taxonomic history of C. ruffus (Laurenti, 1768). Zootaxa, 4093 (1), 1–25.

    https://doi.org/10.11646/zootaxa.4093.1.1

    Klabacka, R.L., Wood, P.L. Jr., McGuire, J.A., Oaks, J.R., Grismer, L.L., Grismer, J.L., Aowphol, A. & Sites, J.W. Jr. (2020) Rivers of Indochina as potential drivers of lineage diversification in the spotted flying lizard (Draco maculatus) species complex. Molecular Phylogenetics and Evolution, 2020, 106861.

    https://doi.org/10.1016/j.ympev.2020.106861

    Köhler, G. (2012) Color Catalogue for Field Biologists. Herpeton Publishing, Offenbach, 49 pp.

    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34 (3), 772–773.

    https://doi.org/10.1093/molbev/msw260

    Lang, R., de (2011) The Snakes of the Leser Sunda Islands (Nusa Tenggara), Indonesia. Edition Chimaira, Frankfurt am Main, 359 pp.

    Lang, R., de (2013) The Snakes of the Moluccas (Maluku), Indonesia. Edition Chimaira, Frankfurt am Main, 417 pp.

    Laurenti, J.N. (1768) Specimen Medicum, Exhibens Synopsin [sic.] Reptilium Emendatam cum Experimentis circa Venena et Antidota Reptilium Austriacorum. Johann Thomas von Trattner, Vienna, 214 pp., 5 pls.

    http://dx.doi.org/10.5962/bhl.title.5108

    Lee, M.S. & Scanlon, J.D. (2002) Snake phylogeny based on osteology, soft anatomy, and ecology. Biological Reviews, 77 (3), 333−401.

    https://doi.org/10.1017/S1464793102005924

    Lidth de Jeude, T.W., van (1890) Reptilia from the Malay Archipelago. II. Ophidia. In: Weber, M. (Ed.), Zoologische Ergebnisse einer Reise in Niederländisch Ost-Indien. 1 (2). E.J. Brill, Leiden, pp. 178–192.

    https://doi.org/10.5962/bhl.title.52289

    Linnaeus, C. (1758) Systema Naturæ per Regna Tria Naturæ Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Editio Decima, Reformata. Salvius, Holmiæ (Stockholm), 824 pp.

    https://doi.org/10.5962/bhl.title.35518

    Lukoschek, V., Osterhage, J.L., Karns, D.R., Murphy, J.C. & Voris, H.K. (2011) Phylogeography of the Mekong mud snake (Enhydris subtaeniata): the biogeographic importance of dynamic river drainages and fluctuating sea levels for semiaquatic taxa in Indochina. Ecology and Evolution, 1 (3), 330–342.

    https://doi.org/10.1002/ece3.29

    Macey, J.R., Larson, A., Ananjeva, N.B., Fang, Z. & Papenfuss, T.J. (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution, 14 (1), 91–104.

    https://doi.org/10.1093/oxfordjournals.molbev.a025706

    Mader, F. & Mecke, S. (2018) First record of a melanistic specimen of Cylindrophis ruffus (Laurenti, 1768) sensu lato (Serpentes: Cylindrophiidae). Herpetology Notes, 11 (2018), 417–420.

    Mahendra, B.C. (1936) On two collections of the ophidian genus, Cylindrophis Wagler. Proceedings of the Indian Academy of Sciences, Section B, 4 (3), 230–238.

    McDowell, S.B. (1975) A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum. Part II. Anilioidea and Pythoninae. Journal of Herpetology, 9 (1), 1–79.

    https://doi.org/10.2307/1562691

    McDowell, S.B. (1987) Systematics. In: Seigel, R.A., Collins, J.T. & Novak, S.S. (Eds.), Snakes: Ecology and Evolutionary Biology. Macmillan, New York, pp. 3–50.

    Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, USA, 14 November 2010, pp. 1–8.

    https://doi.org/10.1109/GCE.2010.5676129

    Müller, J. (1831) Beiträge zur Anatomie und Naturgeschichte der Amphibien. Zeitschrift für Physiologie, 4 (2), 190–275.

    Nicholls, L. (1929) A new species of earth snake of the genus Silybura [Silybura phillipsi]. Spolia Zeylanica, 15 (2), 153–155.

    Noonan, B.P. & Chippindale, P. (2006) Dispersal and vicariance: the complex evolutionary history of boid snakes. Molecular Phylogenetics and Evolution, 40 (2), 347–58.

    https://doi.org/10.1016/j.ympev.2006.03.010

    O’Shea, M., Sanchez, C., Kathriner, A., Mecke, S., Carvalho, V.L., Ribeiro, A.V., Soares, Z.A., Araujo, L.L., de & Kaiser, H. (2015) Herpetological diversity of Timor-Leste: updates and a review of species distributions. Asian Herpetological Research, 6 (2), 73–131.

    https://doi.org/10.16373/j.cnki.ahr.140066

    Palumbi, S.R., Martin, A.P., Romano, S., McMillan, W.O., Stice, L. & Grabowski, G. (1991) The Simple Fool’s Guide to PCR. Department of Zoology Special Publication, University of Hawaii at Manoa, Honolulu, 47 pp.

    Pyron, R.A. (2016) Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Systematic Biology, 66 (1), 38–56.

    https://doi.org/10.1093/sysbio/syw068

    Pyron, R.A., Burbrink, F.T. & Wiens, J.J. (2013a) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13 (1), 93–140.

    https://doi.org/10.1186/1471-2148-13-93

    Pyron, R.A., Kandambi, H.K.D., Hendry, C.R., Pushpamal, V., Burbrink, F.T. & Somaweera, R. (2013b) Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Molecular Phylogenetics and Evolution, 66 (3), 969–978.

    https://doi.org/10.1016/j.ympev.2012.12.004

    Quah, E., Grismer, L.L., Wood, P.L. Jr., Thura, M., Zin, T., Kyaw, H., Lwin, N., Grismer, M.S. & Murdoch, M.L. (2017) A new species of mud snake (Serpentes, Homalopsidae, Gyiophis Murphy & Voris, 2014) from Myanmar with a first molecular phylogenetic assessment of the genus. Zootaxa, 4238 (4), 571–582.

    https://doi.org/10.11646/zootaxa.4238.4.5

    Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67 (5), 901–904.

    https://doi.org/10.1093/sysbio/syy032

    Rieppel, O. (1977) Studies on the skull of the Henophidia (Reptilia: Serpentes). Journal of Zoology, 181 (2), 145–173.

    https://doi.org/10.1111/j.1469-7998.1977.tb03235.x

    Rieppel, O. (1979) A cladistic classification of primitive snakes based on skull structure. Journal of Zoological Systematics and Evolutionary Research, 17 (2), 140–150.

    https://doi.org/10.1111/j.1439-0469.1979.tb00696.x

    Reeder, T.W., Townsend, T.M., Mulcahy, D.G., Noonan, B.P., Wood, P.L. Jr., Sites, J.W. & Wiens, J.J. (2015) Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE, 10 (3), 1–22.

    https://doi.org/10.1371/journal.pone.0118199

    Romer, A.S. (1956) Osteology of the Reptiles. University of Chicago Press, Chicago, 772 pp.

    Ronquist, F., Teslenko, M., Mark, P., van der, Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542.

    https://doi.org/10.1093/sysbio/sys029

    Roux, J. (1911) Elbert-Sunda-Expedition des Frankfurter Vereins für Geographie und Statistik: Reptilien und Amphibien. Zoologische Jahrbücher Jena, 30 (5), 495−508.

    Sabaj, M.H. (2016) Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an Online Reference. Version 6.5 (16 August 2016). American Society of Ichthyologists and Herpetologists, Washington, D.C. Electronically accessible. Available from: http://www.asih.org (accessed 27 July 2020)

    Slowinski, J.B. & Lawson, R. (2002) Snake phylogeny: evidence from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 24 (2), 194–202.

    https://doi.org/10.1016/S1055-7903(02)00239-7

    Smith, L.A. & Sidik, I. (1998) Description of a new species of Cylindrophis (Serpentes: Cylindrophiidae) from Yamdena Island, Tanimbar Archipelago, Indonesia. Raffles Bulletin of Zoology, 46 (2), 419−424.

    Smith, M.A. (1940) A new snake of the genus Anomochilus from the Malay Peninsula. Annals & Magazine of Natural History, Series 11, 6 (35), 447–449.

    https://doi.org/10.1080/03745481.1940.9723701

    Smith, M.A. (1943) The Fauna of British India, Ceylon and Burma, including the Whole of the Indo-Chinese Subregion. Reptilia and Amphibia. Vol. III. Serpentes. Taylor and Francis, London, 583 pp.

    Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312–1313.

    https://doi.org/10.1093/bioinformatics/btu033

    Stejneger, L. (1907) Herpetology of Japan and adjacent territory. Bulletin of the United States National Museum, 58, 1–577.

    https://doi.org/10.5479/si.03629236.58.i

    Stuebing, R.B. (1994) A new Species of Cylindrophis (Serpentes: Cylindrophiidae) from Sarawak, Western Borneo. Raffles Bulletin of Zoology, 42 (4), 967–973.

    Stuebing, R.B. & Goh, R. (1993) A new record of Leonard’s pipesnake, Anomochilus leonardi Smith (Serpentes: Uropeltidae: Cylindrophinae) from Sabah, northwestern Borneo. Raffles Bulletin of Zoology, 41 (2), 311–314.

    Townsend, T., Larson, A., Louis, E. & Macey, J.R. (2004) Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53 (5), 735–757.

    https://doi.org/10.1080/10635150490522340

    Uetz, P., Freed, P. & Hošek, J. (Eds.) (2020) The Reptile Database. Electronically accessible. Available from: http://www.reptile-database.org (accessed 27 July 2020)

    Vidal, N. & Hedges, S.B. (2002) Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes. Comptes Rendus Biologies, 325 (9), 977–985.

    https://doi.org/10.1016/S1631-0691(02)01510-X

    Vitt, L.J. & Caldwell, J.P. (2014). Herpetology. An Introductory Biology of Amphibians and Reptiles. Fourth Edition. Elsevier, Amsterdam, 757 pp.

    https://doi.org/10.1016/B978-0-12-386919-7.00022-8

    Voris, H.K. (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27 (5), 1153–1167.

    https://doi.org/10.1046/j.1365-2699.2000.00489.x

    Wagler, J. (1828) Descriptiones et Icones Amphibiorum. Fasc. I. J.G. Cotta, Monachii (Munich), Stuttgartiae (Stuttgart) et Tubingae (Tübingen), pls. I–XII, 28 associated unnumbered pages.

    https://doi.org/10.5962/bhl.title.77350

    Wall, F. (1925) Notes on snakes collected in Burma in 1924. Journal of the Bombay Natural History Society, 30 (4), 805–821.

    Wall, F. (1926) Snakes collected in Burma in 1925. Journal of the Bombay Natural History Society, 31 (3), 558–566.

    Weisrock, D.W., Macey, J.R., Ugurtas, I.H., Larson, A. & Papenfuss, T.J. (2001) Molecular phylogenetics and historical biogeography among salamandrids of the “true” salamander clade: rapid branching of numerous highly divergent lineages in Mertensiella luschani associated with the rise of Anatolia. Molecular Phylogenetics and Evolution, 18 (3), 434–448.

    https://doi.org/10.1006/mpev.2000.0905

    Wiens, J.J., Hutter, C.R., Mulcahy, D.G., Noonan, B.P., Townsend, T.M., Sites, J.W. Jr., & Reeder, T.W. (2012) Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8 (6), 1043–1046.

    https://doi.org/10.1098/rsbl.2012.0703

    Wiens, J.J., Kuczynski, C.A., Smith, S.A., Mulcahy, D.G., Sites, J.W. Jr., Townsend, T.M. & Reeder, T.W. (2008) Branch length, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. Systematic Biology, 57 (3), 420–431.

    https://doi.org/10.1080/10635150802166053

    Woodruff, D.S. (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodiversity and Conservation, 19 (4), 919–941.

    https://doi.org/10.1007/s10531-010-9783-3

    Zamudio, K.R. & Greene, H.W. (1997) Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society, 62 (3), 421–442.

    https://doi.org/10.1111/j.1095-8312.1997.tb01634.x

    Zheng, Y. & Wiens, J.J. (2016) Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94 (Part B), 537–547.

    https://doi.org/10.1016/j.ympev.2015.10.009