Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-03-18
Page range: 507–520
Abstract views: 94
PDF downloaded: 4

Comparative mitochondrial genomics of Shoveliteratura triangula (Orthoptera, Tettigoniidae, Meconematinae) and the first description of a female specimen

Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, Shaanxi, China Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, Shaanxi, China
College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, Shaanxi, China Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, Shaanxi, China
Orthoptera Meconematinae Shoveliteratura triangula Female Mitochondrial genome Phylogeny

Abstract

This paper provides the first description of a female of Shoveliteratura triangula Shi, Bian & Change, 2011, as well as the complete mitogenome sequence using next-generation sequencing (NGS) technology. The length of the entire mitogenome was 16,152 bp and contained the typical gene arrangement, base composition, and codon usage found in other related species. The overall base composition exhibited a clear anti-G (10.8%) and AT bias (70.5%). The third codon positions in all protein-coding genes (PCGs) displayed high AT-content values (81.4%) in contrast to lower values of 64.2%/64.5% in the first/second positions. Two tandem repeats, 2.49 repeats of 112 bp and 3.65 repeats of 201 bp, contributed 1013 bp to the length of the S. triangula control region (CR). A T-stretch as a recognition sequence of the replication origin and more than one distinct tandem repeat in the CR were common in the Tettigoniidae mitogenomes. Both the maximum likelihood (ML) and Bayesian inference (BI) analyses supported each subfamily of the Tettigoniidae as a monophyletic group. The relationships of the subfamilies were as follows: (Lipotactinae (Hexacentrinae (Conocephalinae (Meconematinae (Bradyporinae, Tettigoniinae))))). The newly sequenced species S. triangula was most closely related to Pseudokuzicus pieli.

 

References

  1. Bae, J.S., Kim, I., Sohn, H.D. & Jin, B.R. (2004) The Mitochondrial Genome of The Firefly, Pyrocoelia rufa: Complete DNA Sequence, Genome Organization, and Phylogenetic Analysis with Other Insects. Molecular Phylogenetics and Evolution, 204, 32978–985.

    https://doi.org/10.1016/j.ympev.2004.03.009

    Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P.F. (2013) MITOS: Improved de novo Metazoan Mitochondrial Genome Annotation. Molecular Phylogenetics and Evolution, 69 (2), 313–319.

    https://doi.org/10.1016/j.ympev.2012.08.023

    Boore J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Research, 27, 1767–1780.

    Boore J.L. (2006) The use of genome-level characters for phylogenetic reconstruction. Trends in Ecology and Evolution, 21, 439–446.

    https://doi.org/10.1016/j.tree.2006.05.009

    Broughton R.E. & Dowling, T.E. (1994) Length Variation in Mitochondrial DNA of the Minnow Cyprinezza Spiloptera. Genetics, 138, 179–190.

    https://doi.org/10.1101/gad.8.17.2110

    Cameron, S.L. & Whiting, M.F. (2008) The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene, 408, 112–123.

    https://doi.org/10.1016/j.gene.2007.10.023

    Cameron, S.L. (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 50, 95–117.

    https://doi.org/10.1146/annurev-ento-011613-162007

    Chen, L.X. Mao, S.L. & Chang, Y.L. (2019) One new species of the genus Xizicus Gorochov, 1993 (Orthoptera: Tettigoniidae: Meconematinae) from Guangxi, China. Zootaxa, 4652 (1), 196–200.

    https://doi.org/10.11646/zootaxa.4652.1.14

    Chevreux, B., Pfisterer, T., Drescher, B., Driesel, A.J., Muller, W.E., Wetter, T. & Suhai, S. (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Research, 14, 1147-1159.

    https://doi.org/10.1101/gr.1917404

    Cigliano, M.M., Braun, H., Eades, D.C. & Otte, D. (2019) Orthoptera Species File Online. Version 5.0/5.0 [WWW document]. URL http:// Orthoptera. SpeciesFile.org [accessed on 8 August 2019].

    Clayton, D.A. (1982) Replication of animal mitochondrial DNA. Cell, 28, 693–705.

    https://doi.org/10.1016/0092-8674(82)90049-6

    Dou, Y.J. & Shi, F.M. (2018) One new genus of the tribe Meconematini (Orthoptera: Tettigoniidae: Meconematinae) from China. Zootaxa, 4429 (3), 569–571.

    https://doi.org/10.11646/zootaxa.4429.3.6

    Foster, P.G., Jermiin, L.S. & Hickey, D.A. (1997) Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. Journal of Molecular Evolution, 44, 282–288.

    https://doi.org/10.1007/pl00006145

    Gelfand, Y., Rodriguez, A. & Benson, G. (2007) TRDB—The Tandem Repeats Database. Nucleic Acids Research, 35, 80-87.

    https://doi.org/10.1093/nar/gkl1013

    Gorochov, A.V. & Kang, L. (2005) Studies on the tribe Meconematini (Orthoptera: Tettigoniidae: Meconematinae) from China. Oriental Insects, 39, 63–87.

    https://doi.org/10.1080/00305316.2005.10417418

    Hahn, C., Bachmann, L. & Chevreux B. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-A baiting and iterative mapping approach. Nucleic Acids Research, 41: e129.

    https://doi.org/10.1093/nar/gkt371

    Han, N., Yuan, H., Wang, J., Zhou, Y.F. & Mao, S.L. (2019) Mitochondrial genome of a brachypterous species in Meconematinae: Acosmetura nigrogeniculata and its phylogenetic implication. Mitochondrial DNA Part B, 4 (2), 2098–2099.

    https://doi.org/10.1080/23802359.2019.1622468

    Hassanin, A., Leger, N. & Deutsch, J. (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Systematic Biology, 54, 277–298.

    https://doi.org/10.1080/10635150590947843

    Hoelzel, A.R. (1993) Evolution by DNA turnover in the control region of vertebrate mitochondrial DNA. Current Opinion in Genetics & Development, 3, 891–895.

    https://doi.org/10.1016/0959-437X(93)90010-M

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

    https://doi.org/10.1093/bioinformatics/bts199

    Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33 (3), 1870–1874.

    https://doi.org/10.1093/molbev/msw054

    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Molecular Biology Evolutionary, 34 (3), 772–773.

    https://doi.org/10.1093/molbev/msw260

    Lavrov, D.V., Brown, W.M. & Boore, J.L. (2004) Phylogenetic position of the Pentastomida and (pan) crustacean relationships. Proceedings of the Royal Society B: Biological Sciences, 271, 537–544.

    https://doi.org/10.1098/rspb.2003.2631

    Levinson, G. & Gutman, G.A. (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 4, 203–221.

    https://doi.org/10.1093/oxfordjournals.molbev.a040442

    Li, H., Shao, R., Song, N., Song, F., Jiang, P., Li, Z. & Cai, W. (2015) Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Scientific Reports, 5, 8527.

    https://doi.org/10.1038/srep08527

    Lin, L.L., Li, X.J., Zhang, H.L. & Zheng, Z.M. (2017) Mitochondrial genomes of three Tetrigoidea species and phylogeny of Tetrigoidea. PeerJ, 5, e4002.

    https://doi.org/10.7717/peerj.4002

    Liu, C.X., Chang, J., Ma, C., Li, L. & Zhou. S.Y. (2013) Mitochondrial genomes of two Sinochlora species (Orthoptera): novel genome rearrangements and recognition sequence of replication origin. BMC Genomics, 14, 114.

    https://doi.org/10.1186/1471-2164-14-114

    Liu, F. (2017) Mitogenome Sequence Analysis of Xizicus howardi (Orthoptera: Tettigoniidae). Genomics and Applied Biology, 36 (8), 3194–3199.

    Liu, X.W. (2000) Three new genera and seven new species of the tribe Meconematini from China (Orthoptera: Tettigonioidea: Meconematidae). Zoological Research, 21, 218–226.

    Mao, S.L., Qiu, Z.Y., Li, Q., Li, Y. & Zhou, Y.F. (2018b). Complete mitochondrial genome of Xiphidiopsis (Xiphidiopsis) gurneyi (Orthoptera, Tettigoniidae, Meconematinae), Mitochondrial DNA Part B, 3 (2), 630-631.

    https://doi.org/10.1080/23802359.2018.1476073

    Mao, S.L., Yuan, H., Lu, C., Zhou, Y.F., Shi, F.M. & Wang, Y.C. (2018a). The complete mitochondrial genome of Xizicus (Haploxizicus) maculatus revealed by Next-Generation Sequencing and phylogenetic implication (Orthoptera, Meconematinae). ZooKeys, 773, 57–67.

    https://doi.org/10.3897/zookeys.773.24156

    Mugleston, J., Naegle, M., Song, H., Bybee, S.M., Ingley, S., Suvorov, A. & Whiting, M.F. (2016) Reinventing the leaf: multiple origins of leaf-like wings in katydids (Orthoptera:Tettigoniidae). Invertebrate Systematics, 30, 335–352.

    https://doi.org/10.1071/IS15055

    Mugleston, J.D., Naegle, M., Song, H. & Whiting, M.F. (2018) A comprehensive phylogeny of tettigoniidae (Orthoptera: Ensifera) reveals extensive ecomorph convergence and widespread taxonomic incongruence. Insect Systematics and Diversity, 2, 1–27.

    https://doi.org/10.1093/isd/ixy010

    Mugleston, J.D., Song, H. & Whiting, M.F. (2013) A century of paraphyly: a molecular phylogeny of katydids (Orthoptera: Tettigoniidae) supports multiple origins of leaf-like wings. Molecular Phylogenetics and Evolution, 69, 1120–1134.

    https://doi.org/10.1016/j.ympev.2013.07.014

    Ojala, D., Montoya, J. & Attardi, G. (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature, 290, 470–474.

    https://doi.org/10.1038/290470a0

    Pâques, F., Leung, W.Y. & Haber, J.E. (1998) Expansions and contractions in a tandem repeat induced by double-strand break repair. Molecular and Cellular Biology, 18, 2045–2054.

    https://doi.org/10.1128/mcb.18.4.2045

    Perna, N.T. & Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41, 353–358.

    https://doi.org/10.1007/BF00186547

    Pons, J., Bauzà-Ribot, M.M., Jaume, D. & Juan, C. (2014) Next-generation sequencing, phylogenetic signal and comparative mitogenomic analyses in Metacrangonyctidae (Amphipoda: Crustacea). BMC Genomics, 15, 566.

    https://doi.org/10.1186/1471-2164-15-566

    Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12), 1572–1574.

    https://doi.org/10.1093/bioinformatics/btg180

    Saito, S., Tamura, K. & Aotsuka, T. (2005) Replication origin of mitochondrial DNA in insects. Genetics, 171, 1695–1705.

    https://doi.org/10.1534/genetics.105.046243

    Sheffield, N.C., Song, H., Cameron, L. & Whiting MF. (2008) A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Molecular Biology and Evolution, 25, 2499–2509.

    https://doi.org/10.1093/molbev/msn198

    Shi, F.M., Bian, X. & Chang, Y.L. (2011) New bushcrickets of the tribe Meconematini (Orthoptera, Tettigoniidae, Meconematinae) from China. Zootaxa, 2981, 36–42.

    https://doi.org/10.11646/zootaxa.2981.1.3

    Shi, W., Kong, X.Y., Wang, Z.M., Yu, S.S., Chen, H.X. & De Stasio, E.A. (2013) Pause-melting misalignment: a novel model for the birth and motif indel of tandem repeats in the mitochondrial genome. BMC Genomics, 14, 103.

    https://doi.org/10.1186/1471-2164-14-103

    Song, H., Amedegnato, C., Cigliano, M.M., Grandcolas, L.D., Headse, S.W., Huang, Y., Otte, D. & Whiting M.F. (2015) 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics, 31, 621–651.

    https://doi.org/10.1111/cla.12116

    Trifinopoulos, J., Nguyen, L.T., von Haeseler, A., & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44 (W1), W232–W235.

    https://doi.org/10.1093/nar/gkw256

    Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27, 171–180.

    https://doi.org/10.1111/j.1096-0031.2010.00329.x

    Wang, H.Q., Liu, X.W. & Li, K. (2015) New taxa of Meconematini (Orthoptera: Tettigoniidae: Meconematinae) from Guangxi, China. Zootaxa, 3941, 509–541.

    https://doi.org/10.11646/zootaxa.3941.4.3

    Wang, T., Shi, F.M. & Wang, H.J. (2018) One new species of the genus Acosmetura and supplement of Acosmetura emeica Liu Zhou, 2007 (Tettigoniidae: Meconematinae) from Sichuan, China. Zootaxa, 4462, 134–138.

    https://doi.org/10.11646/zootaxa.4462.1.8

    Yang, H., Wang, J.J., Dai, R.H., Yu, H.P. & Yang, M.F. (2017) Sequence and phylogenetic analysis of the complete mitogenome of Myzus Persicae (Hemiptera: Aphididae). Acta Entomologica Sinica, 60 (1), 84–94.

    Yang, J., Ye, F. & Huang, Y. (2016) Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications. Gene, 575, 702–711.

    https://doi.org/10.1016/j.gene.2015.09.052

    Yang, M.R., Zhou, Z.J., Chang, Y.L. & Zhao, L.H. (2012) The mitochondrial genome of the quite-calling katydids, Xizicus fascipes Orthoptera: Tettigoniidae: Meconematinae). Journal of Genetics, 91, 141–153.

    https://doi.org/10.1007/s12041-012-0157-3

    Zhang, C.Y. & Huang, Y. (2008) Complete mitochondrial genome of Oxya chinensis (Orthoptera, Acridoidea). Acta Biochimica et Biophysica Sinica, 40, 7–18.

    https://doi.org/10.1111/j.1745-7270.2008.00375.x

    Zhou, Z.J., Shi, F.M. & Zhao, L. (2014) The First Mitochondrial Genome for the Superfamily Hagloidea and Implications for Its Systematic Status in Ensifera. PLoS ONE, 9 (1), e86027.

    https://doi.org/10.1371/journal.pone.0086027.

    Zhou, Z.J., Yang, M.R., Chang, Y.L. & Shi, F.M. (2013). Comparative analysis of mitochondrial genomes of two long-legged katydids (Orthoptera: Tettigoniidae). Acta Entomologica Sinica, 56 (4), 408–418.

    Zhou, Z.J., Zhao, L., Liu, N., Guo, H.F., Guan, B., Di, J.X. & Shi, F.M. (2017) Towards a higher-level Ensifera phylogeny inferred from mitogenome sequences. Molecular Phylogenetics and Evolution, 108, 22–33.

    https://doi.org/10.1016/j.ympev.2017.01.014

    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31 (13), 3406–3415.

    https://doi.org/10.1093/nar/gkg595

    Karşi, U. & Çiplak, B. (2019) Mitogenome of Anterastes babadaghi (Orthoptera: Tettigoniinae; Platycleidini): Frequent conserved overlapping regions within Tettigoniinae. Zootaxa, 4651 (1), 173–190.

    https://doi.org/10.11646/zootaxa.4651.1.11

    Zhang, D.X., Szymura, J.M. & Hewitt, G.M. (1995) Evolution and structural conservation of the control region of insect mitochondrial DNA. Journal of Molecular Evolution, 40 (4), 382–391.

    https://doi.org/10.1007/BF00164024