Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-03-03
Page range: 302–326
Abstract views: 170
PDF downloaded: 10

Morphology and multilocus phylogeny of the Spiny-footed Lizard (Acanthodactylus erythrurus) complex reveal two new mountain species from the Moroccan Atlas

CEFE, CNRS, University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France. Institut de Systématique, Evolution, Biodiversité, Muséum national d’Histoire naturelle, CNRS UPMC EPHE, Sorbonne Universités, CP30, 25 rue Cuvier 75005 Paris, France.
CEFE, EPHE-PSL, CNRS, University of Montpellier, University Paul Valéry Montpellier 3, IRD, Biogéographie et Écologie des Vertébrés, Montpellier, France.
CEFE, CNRS, University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France. Naturalia Environnement, Site Agroparc, Avignon, France.
CEFE, CNRS, University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France. Evolution of Sensory Systems Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse 5, 82319, Seewiesen, Germany.
CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto. R. Padre Armando Quintas, 11, 4485-661 Vairão, Portugal. Departamento de Biologia da Faculdade de Ciências da Universidade do Porto. Rua Campo Alegre, 4169-007 Porto, Portugal.
CBGP UMR 1062, Université de Montpellier, INRA, CIRAD, IRD, Montpellier SupAgro, Montpellier, France. Institut de Biologie Computationnelle, Université de Montpellier, Montpelier, France.
CEFE, CNRS, University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France.
Reptiles Lacertidae Morocco Algeria Biodiversity Systematics Integrative taxonomy

Abstract

We generated an extensive morphological and multilocus molecular dataset to investigate the taxonomy of Acanthodactylus erythrurus, a widespread species across the Mediterranean and semiarid habitats of the Iberian Peninsula and the Maghreb. Our integrated analyses revealed the existence of at least five basal lineages: (i) an Ibero-Moroccan clade widespread across Morocco and the Iberian Peninsula, from sea-level up to a maximal known altitude of 1,930 m, (ii) an Algero-Tunisian clade, distributed in coastal and inland areas of eastern Algeria and Tunisia, (iii) a Central Algerian clade, formed by two inland populations located in central Algeria (1,000–1,500 m a.s.l.), (iv) a western High Atlas clade including two montane populations from Jbel Siroua and Tizi n’Tichka (at 2,320 m and 2,176 m a.s.l., respectively) and (v) an eastern High Atlas clade, including at least two montane populations from Isli and Tislit (both localities around 2,275 m a.s.l.). An integrated species delimitation approach combining molecular and multivariate morphological analyses demonstrated complete reproductive isolation and hence speciation between the Ibero-Moroccan clade and the eastern High Atlas clade in their contact zone. The divergence between all five clades is broadly similar, supporting the existence of at least five species in the Acanthodactylus erythrurus complex. In the present work we describe the two well-differentiated endemic species from the Moroccan Atlas for which no name is available: Acanthodactylus lacrymae sp. nov. from Isli and Tislit and A. montanus sp. nov. from Jbel Siroua and Tizi n’Tichka. Further work will be needed to fully resolve the taxonomy of this species complex.

 

References

  1. Arnold, E. (1983) Osteology, genitalia and the relationships of Acanthodactylus (Reptilia: Lacertidae). Bulletin of the British Museum (Natural History), 44, 291–339.

    Bons, J. & Geniez, P. (1995) Contribution to the systematics of the lizard Acanthodactylus erythrurus (Sauria, Lacertidae) in Morocco. Herpetological Journal, 5, 271–280.

    Bons, J. & Geniez, P. (1996) Amphibiens et Reptiles du Maroc, Sahara Occidental compris. Atlas biogéographique. Asociación Herpetológica Española, Barcelona, 320 pp.

    Boulenger, G.A. (1918) Sur les lézards du genre Acanthodactylus Wieg. Bulletin de la Societé Zoologique de France, 43, 143–155.

    Boulenger, G.A. (1921) Monograph of the Lacertidae. Vol. 2. British Museum, London, 451 pp.

    https://doi.org/10.5962/bhl.title.54022

    Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T. (1992) Single-locus and multilocus DNA fingerprint. In: Hoelzel, A.R. (Ed.), Molecular Genetic Analysis of Populations: A Practical Approach. IRL Press, Oxford, pp. 225–270.

    Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1660.

    https://doi.org/10.1046/j.1365-294x.2000.01020.x

    Doumergue, F. (1901) Essai sur la faune erpétologique de l’Oranie avec des tableaux analytiques et des notations pour la détermination de tous les reptiles et batraciens du Maroc, de l’Algerie et de la Tunisie. Ed. L. Fouque, Oran, 404 pp.

    https://doi.org/10.5962/bhl.title.9100

    Fonseca, M.M., Brito, J.C., Paulo, O.S., Carretero, M.A. & Harris, D.J. (2009) Systematic and phylogeographical assessment of the Acanthodactylus erythrurus group (Reptilia: Lacertidae) based on phylogenetic analyses of mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution, 51, 131–142.

    https://doi.org/10.1016/j.ympev.2008.11.021

    Harris, D.J., Batista, V. & Carretero, M.A. (2004) Assessment of genetic diversity within Acanthodactylus erythrurus (Reptilia: Lacertidae) in Morocco and the Iberian Peninsula using mitochondrial DNA sequence data. Amphibia-Reptilia, 25, 227–232.

    https://doi.org/10.1163/1568538041231229

    Heidari, N., Rastegar-Pouyani, E., Rastegar-Pouyani, N. & Faizi, H. (2014) Molecular phylogeny and biogeography of the genus Acanthodactylus Fitzinger, 1834 (Reptilia: Lacertidae) in Iran, inferred from mtDNA Sequences. Zootaxa, 3860 (4), 379–395.

    https://doi.org/10.11646/zootaxa.3860.4.6

    ICZN (1999) International Code of Zoological Nomenclature. 4th Edition. The International Trust for Zoological Nomenclature, London. Available from: http://www.iczn.org (20 November 2019)

    Kumar, S., Stecher, G. &Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33 (7), 1870–1874.

    https://doi.org/10.1093/molbev/msw054

    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular biology and evolution, 34, 772–773.

    https://doi.org/10.1093/molbev/msw260

    Librado, P. & Rozas, J. (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.

    https://doi.org/10.1093/bioinformatics/btp187

    Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, Louisiana, 8 pp.

    https://doi.org/10.1109/GCE.2010.5676129

    Mirarab, S., Reaz R., Bayzid, M.S., Zimmermann, T., Swenson, M.S. & Warnow, T. (2014) ASTRAL: Genome-Scale Coalescent-Based Species Tree. Bioinformatics, ECCB Special Issue, 30, i541–i548.

    https://doi.org/10.1093/bioinformatics/btu462

    Mirarab, S. & Warnow, T. (2015) ASTRAL-II: Coalescent-Based Species Tree Estimation with Many Hundreds of Taxa and Thousands of Genes. Bioinformatics, ISMB Special Issue, 31, i44–i52.

    https://doi.org/10.1093/bioinformatics/btv234

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation, Molecular Ecology, 21, 1864–1877.

    https://doi.org/10.1111/j.1365-294X.2011.05239.x

    Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer. Version 1.6. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 20 November 2019)

    Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    https://doi.org/10.1093/bioinformatics/btg180

    Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7, 16.

    https://doi.org/10.1186/1742-9994-7-16

    Pinho, C., Harris, D.J. & Ferrand, N. (2007) Contrasting patterns of population subdivision and historical demography in three western Mediterranean lizard species inferred from mitochondrial DNA variation. Molecular Ecology, 16, 1191–1205. https://doi.org/10.1111/j.1365-294X.2007.03230.x

    Salvador, A. (1982) A revision of the lizards of the genus Acanthodactylus (Sauria: Lacertidae). Bonner zoologische Monographien, 16, 1–167.

    Sayyari, E. & Mirarab, S. (2016) Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies. Molecular Biology and Evolution, 33, 1654–1668.

    https://doi.org/10.1093/molbev/msw079

    Schinz, H.R. (1833) Naturgeschichte und Abbildungen der Reptilien. Wiedmann, Leipzig, 240 pp.

    Stamatakis, A. (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics, 30, 1312–1313.

    https://doi.org/10.1093/bioinformatics/btu033

    Stephens, M., Smith, N.J. & Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. The American Journal Human Genetics, 68, 978–989.

    https://doi.org/10.1086/319501

    Tamar, K., Carranza, S., Sindaco, R., Moravec, J., Trape, J.-F. & Meiri, S. (2016) Out of Africa: Phylogeny and biogeography of the widespread genus Acanthodactylus (Reptilia: Lacertidae). Molecular Phylogenetics and Evolution, 103, 6–18.

    https://doi.org/10.1016/j.ympev.2016.07.003

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    https://doi.org/10.1093/molbev/mst197