Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-01-16
Page range: 443–462
Abstract views: 86
PDF downloaded: 3

First report of the lace bug Neoplerochila paliatseasi (Rodrigues, 1981) (Hemiptera: Tingidae) infesting cultivated olive trees in South Africa, and its complete mitochondrial sequence 

Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
Crop Development Division, Infruitec Campus, Agricultural Research Council, Private Bag X5013, Stellenbosch 7600, South Africa
Agricultural Research Council, Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
Research and Exhibitions Department, Iziko South African Museum, P.O. Box 61, Cape Town 8000, South Africa Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
Département Adaptation du Vivant, Muséum National d’Histoire Naturelle, UMR 7179, CP50, 45 Rue Buffon, 75005 Paris, France
Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
DNA barcoding Olea europaea subsp. europaea insect pest lace bug mitogenome phylogeny Hemiptera

Abstract

Olive lace bugs are small phytophagous Hemipteran insects known to cause agricultural losses in olive production in South Africa. Plerochila australis (Distant, 1904) has been reported as the species responsible for damage to olive trees; however, the diversity of olive lace bug species in the region has lacked attention. Adult olive lace bugs were collected incidentally from wild and cultivated olive trees in the Western Cape Province, and identified as P. australis and Neoplerochila paliatseasi (Rodrigues, 1981). The complete mitochondrial genome of a representative specimen of N. paliatseasi was sequenced, and used for comparative mitogenomics and phylogenetic reconstruction within the family. Furthermore, the value of DNA barcodes for species identification in Tingidae was assessed using genetic clustering and estimates of genetic divergence. The patterns of genetic clustering and genetic divergence of COI sequences supported the morphological identification of N. paliatseasi, and the utility of DNA barcoding methods in Tingidae. The complete mitogenome sequence had the typical Metazoan gene content and order, including 13 PCGs, 22 tRNAs, two rRNAs, and an AT-rich non-coding region. A+T content was high, as commonly found in Tingidae. The phylogenetic reconstruction recovered Agramma hupehanum (Drake & Maa 1954) as basal to Tingini, and as a sister species to N. paliatseasi. Stephanitis Stål 1873 and Corythucha Stål 1873 were monophyletic, but Metasalis populi (Takeya 1932) was not recovered as sister to Tingis cardui (Linnaeus 1746), as expected. The mitochondrial phylogeny of the family Tingidae has been recovered inconsistently across different studies, possibly due to sequence heterogeneity and high mutation rates. Species diversity of olive lace bugs in South Africa was previously underestimated. The presence of P. australis was confirmed in both wild and cultivated olives, and N. paliatseasi is reported in cultivated olives for the first time. These results warrant further investigation on the diversity and distribution of olive lace bugs in the Western Cape to inform pest control strategies.

References

  1. Addison, M.F., Addison, P. & Barnes, B.N. (2015) ‘Olive’. In: Prinsloo, G.L. & Uys, V.M. (Eds.), Insects of Cultivated Plants and Natural Pastures in Southern Africa. Entomological Society of Southern Africa, Pretoria, pp. 394–405.

    Arias, B. & Bellotti, A. (2003) Ciclo biológico, comportamiento e importancia económica de Amblystira machalana (Heteroptera: Tingidae) en el cultivo de la yuca (Manihot esculenta Crantz). Revista Colombiana de Entomologìa, 29 (2), 143–148. [http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882003000200005&lng=en.]

    Benson, G. (1999) Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 27 (2), 573–80.

    https://doi.org/10.1093/nar/27.2.573

    Bernt, M., Braband, A., Schierwater, B. & Stadler, P.F. (2013) Genetic aspects of mitochondrial genome evolution. Molecular Phylogenetics and Evolution, 69 (2), 328–38.

    https://doi.org/10.1016/j.ympev.2012.10.020.

    Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Research, 27 (8), 1767–1780. https://doi.org/10.1093/nar/27.8.1767

    Born, J., Linder, H.P. & Desmet, P. (2007) The Greater Cape Floristic Region. Journal of Biogeography, 34 (1), 147–162.

    https://doi.org/10.1111/j.1365-2699.2006.01595.x

    Cameron, S.L. (2013) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59, 95–117.

    https://doi.org/10.1146/annurev-ento-011613-162007

    Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17 (4), 540–52.

    https://doi.org/10.1093/oxfordjournals.molbev.a026334

    Collins, R.A. & Cruickshank, R.H. (2013) The seven deadly sins of DNA barcoding. Molecular Ecology Resources, 13 (6), 969–75.

    https://doi.org/10.1111/1755-0998.12046

    Costa, C. (1998) Olive Production in South Africa: A Handbook for Olive Growers. Edited by A. R. Council Infruitec. ABC Press, Stellenbosch, 124 pp.

    Darriba, D.,Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9 (8), 772–772.

    https://doi.org/10.1038/nmeth.2109

    Deckert, J. & Gollner-Scheiding, U. (2006) Lace bugs of Namibia (Heteroptera, Tingoidea, Tingidae). Denisia, 50, 823–856. [http://www.the-eis.com/data/literature/Lace%20bugs%20of%20Namibia.pdf]

    Evenhuis, N.L. (2019) The insect and spider collections of the world website. Available from: http://hbs.bishopmuseum.org/codens/ (accessed 5 November 2019)

    Folmer, O. Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299.

    https://doi.org/10.1371/journal.pone.0013102

    Foottit, R.G. & Adler, P.H. (2009) Insect Biodiversity: Science and Society. Wiley-Blackwell, West Sussex, 656 pp. [Foottit, R.G. & Adler, P.H. (Eds.)]

    https://doi.org/10.1016/j.biocon.2009.07.023

    Göllner-Scheiding, U. (2007) Die Arten der afrotropischen Gattung Neoplerochila Duarte Rodrigues, 1982 (Insecta, Heteroptera, Tingidae, Tinginae). Beiträge zur Entomologie, 57 (2), 419–428.

    https://doi.org/10.21248/contrib.entomol.57.2.419-428

    Guidoti, M., Montemayor, S.I. & Guilbert, É. (2015) Lace Bugs (Tingidae). In: Panizzi, A. & Grazia, J. (Eds.), True Bugs (Heteroptera) of the Neotropics. Entomology in Focus. Vol. 2. Springer, Dordrecht, pp. 395–419.

    https://doi.org/10.1007/978-94-017-9861-7_14

    Guilbert, E., Damgaard, J. & D’Haese, C.A. (2014) Phylogeny of the lacebugs (Insecta: Heteroptera: Tingidae) using morphological and molecular data. Systematic Entomology, 39 (3), 431–441.

    https://doi.org/10.1111/syen.12045

    Haouas, D., Guilbert, E. & Ben Halima-Kamel, M. (2015) First report of Corythauma ayyari (Drake) (Hemiptera: Tingidae) on Arabian and Spanish jasmine in Tunisia. EPPO Bulletin, 45 (1), 144–147.

    https://doi.org/10.1111/epp.12187

    Integrated Taxonomic Information System (2019) Integrated Taxonomic Information System Online Database (ITIS). Available from: https://www.itis.gov/ (accessed 10 August 2019)

    Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30 (4), 772–780.

    https://doi.org/10.1093/molbev/mst010

    Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16 (2), 111–120.

    https://doi.org/10.1007/BF01731581

    Kocher, A., Guilbert, É., Lhuillier, É. & Murienne, J. (2015) Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. Comptes Rendus Biologies, 338 (3), 149–160.

    https://doi.org/10.1038/33577

    Kress, W.J., García-Robledo, C., Uriarte, M. & Erickson, D.L. (2015) DNA barcodes for ecology, evolution, and conservation. Trends in Ecology and Evolution, 30 (1), 25–35.

    https://doi.org/10.1016/j.tree.2014.10.008

    Kumar, S., Stecher, G., Li, M., Knyaz, C. &Tamura, K. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35 (6), 1547–1549.

    https://doi.org/10.1093/molbev/msy096

    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34 (3), 772–773.

    https://doi.org/10.1093/molbev/msw260

    Laslett, D. & Canbäck, B. (2008) ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics, 24 (2), 172–175.

    https://doi.org/10.1093/bioinformatics/btm573

    Li, H., Leavengood, J.M., Chapman, E.G., Burkhardt, D., Song, F., Jiang, P., Liu, J., Zhou, X. & Cai, W. (2017) Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proceedings of the Royal Society B, 284 (1862), 20171223.

    https://doi.org/10.1098/rspb.2017.1223

    Li, P.W., Wang, X.-Q., Chen, S.-C. & Peng, P. (2017) The complete mitochondrial genome of the tea lace bug, Stephanitis chinensis (Hemiptera: Tingidae). Mitochondrial DNA Part B, 2 (2), 607–608.

    https://doi.org/10.1080/23802359.2017.1372716

    Lin, A., Zhao, X., Li, X. & Song, N. (2017) The complete mitochondrial genome of Corythucha marmorata (Hemiptera: Tingidae). Mitochondrial DNA Part B, 2 (2), 897–899.

    https://doi.org/10.1080/23802359.2017.1407712

    Lis, J.A., Lis, B. & Ziaja, D.J. (2016) In BOLD we trust? A commentary on the reliability of specimen identification for DNA barcoding: A case study on burrower bugs (Hemiptera: Heteroptera: Cydnidae). Zootaxa, 4114 (1), 83–6.

    https://doi.org/10.11646/zootaxa.4114.1.6

    Liu, Y., Song, F., Jiang, P., Wilson, J.J., Cai, W. & Li, H. (2018) Compositional heterogeneity in true bug mitochondrial phylogenomics. Molecular Phylogenetics and Evolution, 118, 135–144.

    https://doi.org/10.1016/j.ympev.2017.09.025

    Miller, L.T. & Nagamine, W.T. (2005) First records of Corythucha gossypii (Hemiptera: Tingidae) in Hawaii, including notes on host plants. Proceedings Hawaiian Entomological Society, 37, 85–88. [https://scholarspace.manoa.hawaii.edu/handle/10125/87]

    Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees, in 2010 Gateway Computing Environments Workshop, GCE 2010.

    https://doi.org/10.1109/GCE.2010.5676129

    Mkize, N., Hoelmer, K.A. & Villet, M.H. (2008) A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea ssp. cuspidata, in the Eastern Cape of South Africa. Biocontrol Science and Technology, 18 (10), 991–1004. https://doi.org/10.1080/09583150802450154

    Nair, S. & Braman, S.K. (2012) Integration of insecticides with the natural enemy Chrysoperla carnea (Stephens) for management of azalea lace bug (Hemiptera: Tingidae). Journal of Entomological Science, 47 (3), 278–281.

    https://doi.org/10.18474/0749-8004-47.3.278

    Oszi, B., Ladányi, M. & Hufnagel, L. (2006) Population dynamics of the sycamore lace bug, Corythucha ciliata (Say) (Heteroptera: Tingidae) in Hungary. Applied Ecology and Environmental Research, 4 (1), 135–150.

    https://doi.org/10.15666/aeer/0401_135150

    Park, D.S., Foottit, R., Maw, E. & Hebert, P.D. (2011) Barcoding bugs: DNA-based identification of the true bugs (Insecta: Hemiptera: Heteroptera). PLoS ONE, 6 (4), e18749.

    https://doi.org/10.1371/journal.pone.0018749

    Peìricart, J. (1983) HeìmipteÌres Tingidae euro-meìditerraneìens, Faune de France. Edited by P. Federation Francaise de Societes de Science Naturelles, Paris, 620 pp.

    Pires, A.C. & Marinoni, L. (2010) DNA barcoding and traditional taxonomy unified through Integrative Taxonomy: a view that challenges the debate questioning both methodologies. Biota Neotropica, 10 (2). [published online]

    https://doi.org/10.1590/s1676-06032010000200035

    Powell, C., Caleca, V., Sinno, M., van Staden, M., van Noort, S., Rhode, C., Allsopp, E. & van Asch, B. (2019) Barcoding of parasitoid wasps (Braconidae and Chalcidoidea) associated with wild and cultivated olives in the Western Cape of South Africa. Genome, 62 (3), 183–199.

    https://doi.org/10.1139/gen-2018-0068

    Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. & Sánchez-Gracia, A. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34 (12), 3299–3302.

    https://doi.org/10.1093/molbev/msx248

    Salinas-Giegé, T., Giegé, R. & Giegé, P. (2015) tRNA biology in mitochondria. International Journal of Molecular Sciences, 16 (3), 4518–59.

    https://doi.org/10.3390/ijms16034518

    Sambrook, J. & Russell, D.W. (2012) Molecular Cloning: A Laboratory Manual. 4th Edition. By Michael R. Green, Howard Hughes Medical Institute, University of Massachusetts Medical School; Joseph Sambrook, Peter MacCallum Cancer Institute, Melbourne, 46 pp.

    Spooner-Hart, R. (2005) Sustainable pest and disease management in Australia olive production. Australian Government, RIRDC Publication No 05/080. Available from: https://www.agrifutures.com.au/wp-content/uploads/publications/05-080.pdf (accessed 6 December 2019)

    Teixeira da Costa, L., Powell, C., van Noort, S., Costa, C., Sinno, M., Caleca, V., Rhode, C., Kennedy, R.J., van Staden, M. & van Asch, B. (2019) The complete mitochondrial genome of Bactrocera biguttula (Bezzi) (Diptera: Tephritidae) and phylogenetic relationships with other Dacini. International Journal of Biological Macromolecules, 26, 130–140.

    https://doi.org/10.1016/j.ijbiomac.2018.12.186

    Yang, H. Li, T., Dang, K. & Bu, W. (2018) Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera). BMC Genomics, 19 (1), 264.

    https://doi.org/10.1186/s12864-018-4650-9

    Yang, W., Yu, W. & Du, Y. (2013) The complete mitochondrial genome of the sycamore lace bug Corythucha ciliata (Hemiptera: Tingidae). Gene, 532 (1), 27–40.

    https://doi.org/10.1016/j.gene.2013.08.087

    Yirgu, A., Getachew, B. & Belay, T. (2012) Short communication report of an olive lace bug infestation on Olea europaea ssp. cuspidata (Wall. ex G. Don) P. S. Green in Desa’a natural forest. Pest Management Journal of Ethiopia, 75, 70–75. [https://pdfs.semanticscholar.org/1088/00994aa496812c4efd187b43fe472902c89a.pdf]