Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-08-07
Page range: 126–134
Abstract views: 66
PDF downloaded: 4

Complete mitogenome of Parum colligata (Lepidoptera: Sphingidae) and its phylogenetic position within the Sphingidae

School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
School of Life Sciences, Huaibei Normal University, 235000, China
Lepidoptera Parum colligata Sphingidae mitogenome phylogeny

Abstract

In this study, the complete mitochondrial DNA sequence of Parum colligata (Lepidoptera: Sphingidae: Smerinthinae) was sequenced firstly. The mitogenome is 15,288 bp in size, containing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and an A+T-rich region. In the mitogenome, Ile, Leu2, and Phe are the most frequently used codon families, while codons GCG, TGC, GGC, CTG, AGG, and ACG are absent. The A+T-rich region is 358 bp in length including a motif ‘ATAGA’, an 18 bp poly-T stretch, three copies of a 12 bp ‘TATATATATATA’, and a short poly-A element. The nucleotides sequence of A+T-rich region is closer to Sphinginae than Macroglossinae. Phylogenetic analyses, based on the PCGs by using Maximum Likelihood (ML) and Bayesian Inference (BI) methods, generated consistent results that Smerinthinae was clustered together with Sphinginae to be the sister groups rather than Macroglossinae.

 

References

  1. Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P. (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69 (2), 313–319.

    https://doi.org/10.1016/j.ympev.2012.08.023

    Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Research, 27 (8), 1767–1780.

    https://doi.org/10.1093/nar/27.8.1767

    Cameron, S.L. (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59 (1), 95–117.

    https://doi.org/10.1146/annurev-ento-011613-162007

    Cameron, S.L. & Whiting, M.F. (2007) Mitochondrial genomic comparisons of the subterranean termites from the Genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). Genome, 50, 188–202.

    https://doi.org/10.1139/g06-148

    Cameron, S.L. & Whiting, M.F. (2008) The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene, 408, 112–123.

    https://doi.org/10.1016/j.gene.2007.10.023

    Dai, L.S., Li, S., Yu, H.M., Wei, G.Q., Wang, L., Qian, C., Zhang, C.F., Li, J., Sun, Y., Zhao, Y., Zhu, B.J. & Liu, C.L. (2017a) Mitochondrial genome of the sweet potato hornworm, Agrius convolvuli (Lepidoptera: Sphingidae), and comparison with other Lepidoptera species. Genome, 60, 128–138.

    https://doi.org/10.1139/gen-2016-0058

    Dai, L.S., Zhou, X.D., Kausar, S., Abbas, M.N., Wu, L. & Zhou, H.L. (2017b) Mitochondrial genome of Diaphania indica (Saunders) (Lepidoptera: Pyraloidea) and implications for its phylogeny. International Journal of Biological Macromolecules, 108, 981–989.

    https://doi.org/10.1016/j.ijbiomac.2017.11.011

    Fenn, J.D., Cameron, S.L. & Whiting, M.F. (2007) The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability. Insect Molecular Biology, 16, 239–252.

    https://doi.org/10.1111/j.1365-2583.2006.00721.x

    Kawahara, A.Y., Mignault, A.A., Regier, J.C., Kitching, I.J. & Mitter, C. (2009) Phylogeny and biogeography of Hawkmoths (Lepidoptera: Sphingidae): evidence from five nuclear genes. PloS ONE, 4 (5), e5719.

    https://doi.org/10.1371/journal.pone.0005719

    Kim, M.J., Choi, S.W. & Kim, I. (2013) Complete mitochondrial genome of the larch hawk moth, Sphinx morio (Lepidoptera: Sphingidae). Mitochondrial DNA, 24, 622–624.

    https://doi.org/10.3109/19401736.2013.772155

    Kim, M.J., Kim, J.S. & Kim, I. (2016) Complete mitochondrial genome of the hawkmoth Notonagemia analis scribae (Lepidoptera: Sphingidae). Mitochondrial DNA Part B, 1, 416–418.

    https://doi.org/10.1080/23802359.2016.1176883

    Kitching, I.J. & Cadiou, J.M. (2000) Hawkmoths of the world: annotated and illustrated revisionary checklist. Cornell University Press, Ithaca, pp. 1–226.

    Koshkin, E.S. & Kostyunin, A.E. (2017) Paper-mulberry hawkmoth Parum colligata (Walker, 1856) (Lepidoptera, Sphingidae), a new species for the fauna of Russia. Far Eastern Entomologist, 344, 18–20.

    https://doi.org/10.25221/fee.344.4

    Lewis, D.L., Farr, C.L., Farquhar, A.L. & Kaguni, L.S. (1994) Sequence, organization, and evolution of the A+T region of Drosophila melanogaster mitochondrial DNA. Molecular Biology & Evolution, 11 (3), 523–538.

    https://doi.org/10.1093/oxfordjournals.molbev.a040132

    Li, J., Lin, R.R., Zhang, Y.Y., Hu, K.J., Zhao, Y.Q., Li, Y., Huang, Z.R., Zhang, X., Geng, X.X. & Ding, J.H. (2018a) Characterization of the complete mitochondrial DNA of Theretra japonica and its phylogenetic position within the Sphingidae (Lepidoptera: Sphingidae). Zookeys, 754, 127–139.

    https://doi.org/10.3897/zookeys.754.23404

    Li, J., Zhang, Y.Y., Hu, K.J., Zhao, Y.Q., Lin, R.R., Li, Y., Huang, Z.R., Zhang, X., Geng, X.X. & Ding, J.H. (2018b) Mitochondrial genome characteristics of two Sphingidae insects (Psilogramma increta and Macroglossum stellatarum) and implications for their phylogeny. International Journal of Biological Macromolecules, 113, 592–600.

    https://doi.org/10.1016/j.ijbiomac.2018.02.159

    Lowe, T.M. & Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25, 955–964.

    https://doi.org/10.1093/nar/25.5.955

    Lowe, T.M. & Chan. P.P. (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44, w54–57.

    https://doi.org/10.1093/nar/gkw413

    Ma, C., Yang, P.C., Jiang, F., Chapuis, M.P., Shall, Y., Sword, G.A. & Kang, L. (2012) Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Molecular Ecology, 21, 4344–4358.

    https://doi.org/10.1111/j.1365-294X.2012.05684.x

    Moritz, C., Dowling, T.E. & Brown, W.M. (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology & Systematics, 18, 269–292.

    https://doi.org/10.1146/annurev.es.18.110187.001413

    Nakamura, M. (1976) An inference on the phylogeny of Sphingidae in relation to habits and the structures of their immature stages. Yugatô, 63, 19–28.

    Nelson, L.A., Lambkin, C.L., Batterham, P., Wallman, J.F., Dowton, M., Whiting, M.F., Yeates, D.K. & Cameron, S.L. (2012) Beyond barcoding: A mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene, 511, 131–142.

    https://doi.org/10.1016/j.gene.2012.09.103

    Nieukerken, E.J., Kaila, L., Kitching, I.J., Kristensen, N.P., Lees, D.C., Minet, J., Mitter, C., Mutanen, M., Regier, J.C., Simonsen, T.J., Wahlberg, N., Yen, S.H., Zahiri, R., Adamski, D., Baixeras, J., Bartsch, D., Bengtsson, B.Å., Brown, J.W., Bucheli, S.R., Davis, D.R., Prins, J.D., Prins, W.D., Epstein, M.E., Gentili-Poole, P., Gielis, C., Hättenschwiler, P., Hausmann, A., Holloway, J.D., Kallies, A., Karsholt, O., Kawahara, A.Y., Koster, S.J.C., Kozlov, M.V., Lafontaine, J.D., Lamas, G., Landry, J.F., Lee, S., Nuss, M., Park, K.T., Penz, C., Rota, J., Schintlmeister, A., Schmidt, B.C., Sohn, J.C., Solis, M.A., Tarmann, G.M., Warren, A.D., Weller, S., Yakovlev, R.V., Zolotuhin, V.V. & Zwick, A. (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Eds.), Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148 (1), 212–221.

    https://doi.org/10.11646/zootaxa.3148.1.41

    Regier, J.C., Mitter, C., Friedlander, T.P. & Peigler, R.S. (2001) Phylogenetic relationships and evolution of hostplant use in Sphingidae (Lepidoptera): initial evidence from two nuclear genes. Molecular Phylogenetics and Evolution, 20, 311–316.

    https://doi.org/10.1006/mpev.2001.0963

    Shao, R., Dowton, M., Murrell, A. & Barker, S.C. (2003) Rates of gene rearrangements and nucleotide substitution are correlated in the mitochondrial genomes of insects. Molecular Biology & Evolution, 20, 1612–1619.

    https://doi.org/10.1093/molbev/msg176

    Sun, Y., Chen, C., Gao, J., Abbas, M.N., Kausar, S., Qian, C., Wang, L., Wei, G., Zhu, B.J. & Liu, C.L. (2017) Comparative mitochondrial genome analysis of Daphnis nerii and other lepidopteran insects reveals conserved mitochondrial genome organization and phylogenetic relationships. PLoS ONE, 12, e0178773.

    https://doi.org/10.1371/journal.pone.0178773

    Xin, Z.Z., Yu, L., Zhu, X.Y., Wang, Y., Zhang, H.B., Zhang, D.Z., Zhou, C.L., Tang, B.P. & Liu, Q.N. (2017) Mitochondrial genomes of two Bombycoidea insects and implications for their phylogeny. Scientific Reports, 7, 6544.

    https://doi.org/10.1038/s41598-017-06930-5

    Zhang, B.C. (1994) Index of economically important Lepidoptera. CAB International, Wallingford, Oxon, pp. 1–599.

    Zhou, Z.J., Huang, Y. & Shi, F.M. (2007) The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome, 50, 855–866.

    https://doi.org/10.1139/G07-057

    Zhu, H.F. & Wang, L.Y. (1997) Fauna Sinica: Insecta. Vol. 11. Lepidoptera, Sphingidae. Science Press, Beijing, pp. 1–359.