Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-08-02
Page range: 173–190
Abstract views: 47
PDF downloaded: 2

Mitogenome of Anterastes babadaghi (Orthoptera: Tettigoniinae; Platycleidini): Frequent conserved overlapping regions within Tettigoniinae

Department of Biology, Faculty of Science, Akdeniz University 07058 Antalya, Turkey
Department of Biology, Faculty of Science, Akdeniz University 07058 Antalya, Turkey
Orthoptera Mitogenome Tettigoniinae Anterastes babadaghi

Abstract

Development of next generation sequencing rapidly increased the number of total mitogenome in data bases. However, the documented number of total mitogenome from species of Tettigoniinae is still limited and a comparison at subfamily level has not been made sufficiently. This paper aims to describe total mitogenome of A. babadaghi (Orthoptera, Tettigoniidae) by comparing to the known mitogenomes of other Tettigoniinae. The total mitogenome of A. babadaghi is 15882–15883 bp, AT skewed with 70.2% AT percentage, and consists of 13 protein coding genes (PCG), 22 tRNA genes, two rRNA genes and an AT rich control region. The genes are ordered as in pancrustacean. The comparative description of mitogenomes in Tettigoniinae showed that total length varies between 15766-16788 bp, the start codon for protein coding genes almost always fits to the ATN pattern, the stop codons are incomplete T-- / TA- and rarely complete TAA, intergenic spacers (IGS) and overlapping regions (OR) in species of the subfamily are similar in number, location, length and nucleotide sequence. We arrived to following conclusion from comparative data: (i) A. babadaghi has a typical orthopteran mitogenome by general features; (ii) this generalisation seems valid for Tettigoniinae as gene content, gene location, gene order, average AT content, anticodons and secondary structure of the tRNA genes, the start and stop codons of the protein coding genes, and several IGSs/ORs are similar to other orthopteran and hexapopods, (iii) variation range in total mitogenome length is narrow in Tettigoniinae and mainly determined by the lengths of control region and total IGSs, (iv) mitogenome of the subfamily exhibits conserved patterns especially in overlapping regions, but conserved features are mostly plesiomorphic.

 

References

  1. Aljanabi, S.M. & Martinez, I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25 (1), 692–693.

    https://doi.org/10.1093/nar/25.22.4692

    Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Research, 27 (8), 1767–1780.

    https://doi.org/10.1093/nar/27.8.1767

    Castro, L.R., Ruberu, K. & Dowton, M. (2006) Mitochondrial genomes Vanhornia eucnemidarium (Apocrita, Vanhornidae) and Primeuchroeus spp. (Aculeata, Chrysididae): evidance of re arranged mitichondrial genomes within Apocrita (Insecta: Hymenoptera). Genome, 49, 752–766.

    https://doi.org/10.1139/g06-030

    Campbell, N.J.H & Barker, S.C. (1999) The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: fivefold tandem repetition of a coding region. Molecular Biology and Evolution, 16 (6), 732–740.

    https://doi.org/10.1093/oxfordjournals.molbev.a026158

    Cigliano, M.M., Braun, H., Eades, D.C. & Otte, D. (2019) Orthoptera species file online Version 5.0/5.0. Available from: http://Orthoptera.SpeciesFile.org (accessed 6 February 2019)

    Çıplak, B. (2004) Systematics, phylogeny and biogeography of Anterastes (Orthoptera, Tettigoniidae, Tettigoniinae): evolution within a refugium. Zoologica Scripta, 33, 19–44.

    https://doi.org/10.1111/j.1463-6409.2004.00131.x

    Çıplak, B., Kaya, S., Boztepe, Z. & Gündüz, I. (2015) Mountainous genus Anterastes (Orthoptera, Tettigoniidae): autochthonous survival in refugial habitats across several glacial ages via vertical range shifts. Zoologica Scripta, 44, 534–549.

    https://doi.org/10.1111/zsc.12118

    Fenn, J.D., Cameron, S.L. & Whiting, M.F. (2007) The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability. Insect Molecular Biology, 16 (1), 239–252.

    https://doi.org/10.1111/j.1365-2583.2006.00721.x

    Karşı, U. & Çıplak, B. (2019) Complete mitogenome of Psorodonotus venosus (Orthoptera): Short intergenic spacers shorten the total genome. Zootaxa, 4614 (3), 498–510.

    https://doi.org/10.11646/zootaxa.4614.3.4

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647–1649.

    https://doi.org/10.1093/bioinformatics/bts199

    Kim, I., Cha, S.Y., Yoon, M.H., Hwang, J.S., Lee, S.M., Sohn, H.D. & Jin, B.R. (2005) The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Gene, 353 (1), 155–168.

    https://doi.org/10.1016/j.gene.2005.04.019

    Kim, I., Lee, E.M., Seol, K.Y., Yun, E.Y., Lee, Y.B., Hwang, J.S. & Jin, B.R. (2006) The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). Insect Molecular Biology, 15 (2), 217–225.

    https://doi.org/10.1111/j.1365-2583.2006.00630.x

    Korkmaz E.M., Budak M., Ördek M.N. & Başıbüyük, H.H. (2016) The complete mitogenomes of Calameuta filiformis (Eversmann 1847) and Calameuta idolon (Rossi 1794) (Hymenoptera: Cephidae): The remarkable features of the elongated A+T rich region in Cephini. Gene, 576 (1), 404–411.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGAX: Molecular evolutionary genetics analysis across computing platform. Molecular Biology and Evolution, 35, 1547–1549.

    https://doi.org/10.1093/molbev/msy096

    Laslett, D. & Canback, B. (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics, 24 (2), 172­–175.

    https://doi.org/10.1093/bioinformatics/btm573

    Lavrov, D.V., Boore, J.L. & Brown, W.M. (2000) The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Molecular Biology and Evolution, 17, 813–824.

    https://doi.org/10.1093/oxfordjournals.molbev.a026360

    Li, J. (2017). Metrioptera ussuriana mitochondrion, complete genome. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_034796.1 (accessed 06 February 2019)

    Öztürk, P.N. & Çıplak, B. (2019) Phylomitogenomics of Phaneropteridae (Orthoptera): Combined data indicate a poorly conserved mitogenome. International Journal of Biological Macromolecules, 132, 1318–1326.

    https://doi.org/10.1016/j.ijbiomac.2019.04.011

    Perna, N.T. & Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41, 353–358.

    https://doi.org/10.1007/BF01215182

    Plazzi, F., Ricci, A. & Passamonti, M. (2011) The mitochondrial genome of Bacillus stick insects (Phasmatodea) and the phylogeny of orthopteroid insects. Molecular Phylogenetics and Evolution, 58, 304–316.

    https://doi.org/10.1016/j.ympev.2010.12.005.

    Roberti, M., Polosa, P.L., Bruni, F., Musicco, C., Gadaleta, M.N. & Cantatore, P. (2003) DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA. Nucleic Acids Research, 31, 1597–1604.

    https://doi.org/10.1093/nar/gkg272.

    Sheffield, N.C., Hiatt, K.D., Valentine, M.C., Song, H. & Whiting, M.F. (2010) Mitochondrial genomics in Orthoptera using MOSAS. Mitochondrial DNA, 21, 87–104.

    https://doi.org/10.3109/19401736.2010.500812

    Smith, D.R. (2016) The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Briefings in Functional Genomics, 15 (1), 47–54.

    https://doi.org/10.1093/bfgp/elv027

    Tang, M., Tan, M.H., Meng, G.L., Yang, S.Z., Su, X., Liu, S.L., Song, W.H., Li, Y.Y., Wu, Q., Zhang, A.B. & Zhou, X. (2014) Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research, 42 (22), 1–13.

    https://doi.org/10.1093/nar/gku917

    Taanman J.-W. (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochimica et Biophysica Acta, 1410, 103–123.

    https://doi.org/10.1016/S0005-2728(98)00161-3

    Wang, J., Qiu, Z., Yuan, H. & Huang, Y. (2017) The complete mitochondrial genomes of two Phaneroptera species (Orthoptera: Tettigoniidea) and comparative analysis of mitochondrial genomes in Orthoptera. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_034756.1 (accessed 18 December 2018)

    Yukuhiro, K., Sezutsu, H., Itoh, M., Shimizu, K. & Banno, Y. (2002) Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Molecular Biology and Evolution, 19, 1385–1389.

    https://doi.org/10.1093/oxfordjournals.molbev.a004200

    Yang, M.R., Zhou, Z.J., Chang, Y.L. & Zhao, L.H. (2012) The mitochondrial genome of the quite-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae). Journal of Genetics, 91, 141–153.

    https://doi.org/10.1007/s12041-012-0157-3

    Yang J., Ye, F. & Huang, Y. (2016) Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications. Gene, 575, 702–711.

    https://doi.org/10.1016/j.gene.2015.09.052

    Zhao, H.B. (2015) Uvarovites inflatus mitochondrion, complete genome. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_026231.1 (accessed 18 December 2018)

    Zhou, Z., Huang, Y. & Shi, F. (2007) The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome, 50 (1), 855–866.

    https://doi.org/10.1139/G07-057

    Zhou, Z., Shi, F. & Huang, Y. (2008) The complete mitogenome of the Chinese bush cricket, Gampsocleis gratiosa (Orhoptera: Tettigonioidea). Journal of Genetics and Genomics, 35 (1), 341–348.

    https://doi.org/10.1016/S1673-8527(08)60050-8

    Zhou, Z., Yang, M., Chang, Y. & Shi, F. (2013) Comparative analysis of mitochondrial genomes of two long-legged katydids (Orthoptera: Tettigoniidae). Acta Entomologica Sinica, 56 (1), 408–418.

    Zhou, Z., Shi, F. & Zhao, L. (2014) The first mitochondrial genome for the superfamily Hagloidea and implications for its systematic status in Ensifera. PLoS ONE, 9 (1), e86027.

    https://doi.org/10.1371/journal.pone.0086027

    Zhou, Z., Zhao, L., Liu, N., Guo, H., Guan, B., Di, J. & Shi, F. (2017) Towards a higher-level Ensifera phylogeny inferred from mitogenome sequences. Molecular Phylogenetics and Evolution, 108 (1), 22–33.

    https://doi.org/10.1016/j.ympev.2017.01.014