Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-06-11
Page range: 498–510
Abstract views: 60
PDF downloaded: 2

Complete mitogenome of Psorodonotus venosus (Orthoptera, Tettigoniidae; Tettigoniinae): Short intergenic spacers shorten the total genome

Department of Biology, Faculty of Science, Akdeniz University 07058 Antalya, Turkey
Department of Biology, Faculty of Science, Akdeniz University 07058 Antalya, Turkey
Orthoptera Total mitogenome Tettigoniinae Psorodonotus Psorodonotus venosus

Abstract

Mitogenomes are popular sources of data in evolutionary studies. By development of next generation sequencing the number of total mitogenome in data bases rapidly increased. However, there is still a limited number of total mitogenome known from species of Tettigoniinae. This paper aims to describe the total mitogenome of Psorodonotus venosus (Orthoptera, Tettigoniidae; Tettigoniinae) obtained by NGS reads. The total mitogenome is 15836-15845 bp and consists of 13 protein coding genes (PCG), 22 tRNA genes, two rRNA genes and an AT rich control region as in other metazozans. The mitogenome is AT skewed with 69.5% AT percentage. The genes are ordered as in pancrustacean. Total length of PCGs is 11229 bp, the start codon for all fits ATN pattern and stop codons are incomplete T-- / TA- and rarely complete TAA. Total length of 22 tRNA genes is 1447 bp and their anticodons are identical to other members of Tettigonioidea. The mitogenome contains 12 overlapping regions constituting 41 bp in total. Of these 12 overlapping regions those between trnW-trnC, atp6-atp8, nad4-nad4L, nad6 –cytb and atp6-cox3 gene pairs seem to be conserved. The total length of seven noncoding intergenic spacers is 46 bp. We concluded that P. venosus is one of the species with short mitogenome amongst Tettigonioidea because of limited number and length of noncoding intergenic spacers.

 

References

  1. Aljanabi, S.M. & Martinez, I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25 (1), 692–693.

    https://doi.org/10.1093/nar/25.22.4692

    Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Research, 27 (8), 1767–1780.

    https://doi.org/10.1093/nar/27.8.1767

    Burmeister, H. (1838) Handbuch der Entomologie, Zweiter Band. Besondere Entomologie. Zweite Abtheilung Kaukerfe, Gymnognatha. Erste Hälfte; vulgo Orthoptera. T.C.F. Enslin, Berlin, viii + 300 pp. [pp. i–viii + pp. 457–756]

    Castro, L.R., Ruberu, K. & Dowton, M. (2006) Mitochondrial genomes Vanhornia eucnemidarium (Apocrita, Vanhornidae) and Primeuchroeus spp. (Aculeata, Chrysididae): evidance of re arranged mitichondrial genomes within Apocrita (Insecta: Hymenoptera). Genome, 49, 752–766.

    https://doi.org/10.1139/g06-030

    Fenn, J.D., Cameron, S.L. & Whiting, M.F. (2007) The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability. Insect Molecular Biology, 16 (1), 239–252.

    https://doi.org/10.1111/j.1365-2583.2006.00721.x

    Cigliano, M.M., Braun, H., Eades, D.C. & Otte, D. (2019) Orthoptera species file online Version 5.0/5.0. Available from: http://Orthoptera.SpeciesFile.org (accessed 6 February 2019)

    Kaya, S., Korkmaz, E.M. & Çıplak, B. (2013) Psorodonotus venosus group (Orthoptera, Tettigoniidae; Tettigoniinae): geometric morphometry revealed two new species in the group. Zootaxa, 3750 (1), 37–56.

    https://doi.org/10.11646/zootaxa.3750.1.3

    Kaya, S. & Çıplak, B. (2016) Budding speciation via peripheral isolation: the Psorodonotus venosus (Orthoptera, Tettigoniidae) species group example. Zoologica Scripta, 45, 521–537.

    https://doi.org/10.1111/zsc.12174

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647–1649.

    https://doi.org/10.1093/bioinformatics/bts199

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGAX: Molecular evolutionary genetics analysis across computing platform. Molecular Biology and Evolution, 35, 1547–1549.

    https://doi.org/10.1093/molbev/msy096

    Kim, I., Cha, S.Y., Yoon, M.H., Hwang, J.S., Lee, S.M., Sohn, H.D. & Jin, B.R. (2005) The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Gene, 353 (1), 155–168.

    https://doi.org/10.1016/j.gene.2005.04.019

    Laslett, D. & Canback, B. (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics, 24 (2), 172–175.

    https://doi.org/10.1093/bioinformatics/btm573

    Lavrov, D.V., Boore, J.L. & Brown, W.M. (2000) The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Molecular Biology and Evolution, 17, 813–824.

    https://doi.org/10.1093/oxfordjournals.molbev.a026360

    Li, J. (2017) Metrioptera ussuriana mitochondrion, complete genome. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_034796.1 (accessed 6 May 2019)

    Öztürk, P.N. & Çıplak, B. (2019) Phylomitogenomics of Phaneropteridae (Orthoptera): Combined data indicate a poorly conserved mitogenome. International Journal of Biological Macromolecules, 132. 1318–1326.

    https://doi.org/10.1016/j.ijbiomac.2019.04.011

    Perna, N.T. & Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41, 353–358.

    https://doi.org/10.1007/BF01215182

    Sheffield, N.C., Hiatt, K.D., Valentine, M.C., Song, H. & Whiting, M.F. (2010) Mitochondrial genomics in Orthoptera using MOSAS. Mitochondrial DNA, 21, 87–104.

    https://doi.org/10.3109/19401736.2010.500812

    Smith, D.R. (2016) The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Briefings in Functional Genomics, 15 (1), 47–54.

    https://doi.org/10.1093/bfgp/elv027

    Song, H., Amedegnato, C., Cigliano, M.M, Grandcolas, L.D., Heads, S.W., Huang, Y., Otte, D. & Whiting, M.F. (2015) 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics, 31 (1), 621–651.

    https://doi.org/10.1111/cla.12116

    Tang, M., Tan, M.H., Meng, G.L., Yang, S.Z., Su, X., Liu, S.L., Song, W.H., Li, Y.Y., Wu, Q., Zhang, A.B. & Zhou, X. (2014) Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research, 42 (22), 1–13.

    https://doi.org/10.1093/nar/gku917

    Taanman, J.-W. (1999) The mitochondrial genome: structure, transcription, translation and replication. BBA, 1410, 103–123.

    https://doi.org/10.1016/S0005-2728(98)00161-3

    Wang, J., Qiu, Z., Yuan, H. & Huang, Y. (2017) The complete mitochondrial genomes of two Phaneroptera species (Orthoptera: Tettigoniidea) and comparative analysis of mitochondrial genomes in Orthoptera. Available from: https://www.ncbi.nlm.nih.gov/nuccore/ NC_034756.1 (accessed 18 December 2018)

    Yang J., Ye, F. & Huang, Y. (2016) Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications. Gene, 575, 702–711.

    https://doi.org/10.1016/j.gene.2015.09.052

    Zhao, H.B. (2015) Uvarovites inflatus mitochondrion, complete genome. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_026231.1 (accessed 18 December 2018)

    Zhou, Z., Huang, Y. & Shi, F. (2007) The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome, 50 (1), 855–866.

    https://doi.org/10.1139/G07-057

    Zhou, Z., Shi, F. & Huang, Y. (2008) The complete mitogenome of the Chinese bush cricket, Gampsocleis gratiosa (Orhoptera: Tettigonioidea). Journal of Genetics and Genomics, 35 (1), 341–348.

    https://doi.org/10.1016/S1673-8527(08)60050-8

    Zhou, Z., Yang, M., Chang, Y. & Shi, F. (2013) Comparative analysis of mitochondrial genomes of two long-legged katydids (Orthoptera: Tettigoniidae). Acta Entomologica Sinica, 56 (1), 408–418.

    Zhou, Z., Zhao, L., Liu, N., Guo, H., Guan, B., Di, J. & Shi, F. (2017) Towards a higher-level Ensifera phylogeny inferred from mitogenome sequences. Molecular Phylogenetics and Evolution, 108 (1), 22–33.

    https://doi.org/10.1016/j.ympev.2017.01.014