Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-01-14
Page range: 523–547
Abstract views: 61
PDF downloaded: 3

Validation of the status of a species with high CO1 and low nuclear genetic divergences: the scab mite Caparinia ictonyctis stat. res. (Acariformes: Psoroptidae) parasitizing the African hedgehog Atelerix albiventris

Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, 199034 St Petersburg, Russia Tyumen State University, 10 Semakova Str., 625003 Tyumen, Russia
Tyumen State University, 10 Semakova Str., 625003 Tyumen, Russia Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, 1109 Geddes Ave., Ann Arbor, Michigan 48109 USA
Department of Parasitology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 60–614 Poznan, Poland.
Acari Acariformes Psoroptidae

Abstract

We report two host-specific lineages of scab mites of the genus Caparinia, parasitizing European and African hedgehogs. Based on morphology, these mite lineages are closely related sister groups. The morphological differences, however, are subtle and do not provide clear-cut evidence for the existence of separate species. CO1 divergence between these lineages was 7.4–7.8%, well above the CO1 barcoding gaps or thresholds commonly used to separate species, whereas divergence of five nuclear genes was very low, 0.06–0.53%, suggesting that these lineages could belong to a single species with gene flow between them. Thus, there is a conflict between the mitochondrial (CO1) gene and nuclear genes (i.e mito-nuclear discordance). We attribute this conflict to the ‘gray zone’ where species delimitation is ambiguous due to substantial gene flow. We also report another ‘gray zone’ species, Psoroptes ovis (a species of veterinary importance), whose within-species CO1 distances reached 6.0%. We provide a detailed morphological description and figures of C. ictonyctis stat. res. from the African hedgehog, using light and SEM microscopy and give morphometric data for this species and its sister species, Caparinia tripilis from Europe. For all known species of Caparinia, we document their host associations and give a key to species of the world based on results of our morphological and molecular analyses and a nearly exhaustive study of museum specimens.

 

References

  1. Amer, S., Abd El Wahab, T., Metwaly, A., Feng, Y.Y. & Xiao, L.H. (2015) Morphologic and genotypic characterization of Psoroptes mites from water buffaloes in Egypt. Plos One, 10 (10), e0141554.

    https://doi.org/10.1371/journal.pone.0141554

    Bates, P.G. (1999) Inter- and intra-specific variation within the genus Psoroptes (Acari : Psoroptidae). Veterinary Parasitology, 83 (3–4), 201–217.

    https://doi.org/10.1016/S0304-4017(99)00058-8

    Bochkov, A.V., Klimov, P.B., Hestvik, G. & Saveljev, A.P. (2014) Integrated Bayesian species delimitation and morphological diagnostics of chorioptic mange mites (Acariformes: Psoroptidae: Chorioptes). Parasitology Research, 113 (7), 2603–2627.

    https://doi.org/10.1007/s00436-014-3914-9

    Brockie, R.E. (1974) The hedgehog mange mite, Caparinia tripilis, in New Zealand. New Zealand Veterinary Journal, 22 (12), 243–247.

    https://doi.org/10.1080/00480169.1974.34179

    Butler, P.M. (2010) Neogene Insectivora. In: Werdelin, L. & Sanders, W.J. (Eds.), Cenozoic mammals of Africa. University of California Press, Berkeley, Los Angeles and London, pp. 573–580.

    Charlesworth, B. (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10 (3), 195–205.

    https://doi.org/10.1038/nrg2526

    Collins, R.A. & Cruickshank, R.H. (2014) Known knowns, known unknowns, unknown unknowns and unknown knowns in DNA barcoding: A comment on Dowton et al. Systematic Biology, 63 (6), 1005–1009.

    https://doi.org/10.1093/sysbio/syu060

    De Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56 (6), 879–886.

    https://doi.org/10.1080/10635150701701083

    Demkowska-Kutrzepa, M., Tomczuk, K., Studzinska, M. & Szczepaniak, K. (2015) Caparinia tripilis in African hedgehog (Atelerix albiventris). Veterinary Dermatology, 26 (1), 73–75.

    https://doi.org/10.1111/vde.12190

    Doña, J., Diaz-Real, J., Mironov, S., Bazaga, P., Serrano, D. & Jovani, R. (2015) DNA barcoding and minibarcoding as a powerful tool for feather mite studies. Molecular Ecology Resources, 15 (5), 1216–1225.

    https://doi.org/10.1111/1755-0998.12384

    Dowton, M., Meiklejohn, K., Cameron, S.L. & Wallman, J. (2014) A preliminary framework for DNA barcoding, incorporating the multispecies coalescent. Systematic Biology, 63 (4), 639–644.

    https://doi.org/10.1093/sysbio/syu028

    Eo, K.Y., Kwak, D. & Kwon, O.D. (2015) Treatment of mange caused by Caparinia tripilis in native Korean wild hedgehogs (Erinaceus amurensis): a case report. Veterinarni Medicina, 60 (1), 57–61.

    https://doi.org/10.17221/7927-VETMED

    Evans, G.O. (1992) Principles of Acarology. University Press, Cambridge and London, 563 pp.

    Fain, A. (1962) Un nouvel acarien psorique du hérisson sud-africain: Caparinia erinacei n.sp. Revue de Zoologie Africaine, 65, 204–210.

    Fain, A. (1975) Nouveaux taxa dans les Psoroptinae hypothese sur l'origine de ce groupe (Acarina, Sarcoptiformes, Psoroptidae). Acta Zoologica et Pathologica Antverpiensia, 61, 57–84.

    Fain, A. & Portus, M. (1979) Two new parasitic mites (Acari, Astigmata) from the Algerian hedgehog Aethechinus algirus, in Spain. Revista Iberica de Parasitologia, 39 (1–4), 577–585.

    Fredes, F. & Roman, D. (2004) Fauna parasitaria en erizos de tierra africanos (Atelerix albiventris). Parasitologia Latinoamericana, 59 (1–2), 79–81.

    https://doi.org/10.4067/S0717-77122004000100017

    Grandjean, F. (1939) La chaetotaxie des pattes chez les Acaridiae. Bulletin de la Société zoologique de France, 64, 50–60.

    Gregory, M.W. (1981) Mites of the hedgehog Erinaceus albiventris Wagner in Kenya: observations on the prevalence and pathogenicity of Notoedres oudemansi Fain, Caparinia erinacei Fain and Rodentopus sciuri Fain. Parasitology, 82 (1), 149–157.

    Griffiths, D.A., Atyeo, W.T., Norton, R.A. & Lynch, C.A. (1990) The idiosomal chaetotaxy of astigmatid mites. Journal of Zoology, 220, 1–32.

    https://doi.org/10.1111/j.1469-7998.1990.tb04291.x

    He, K., Chen, J.H., Gould, G.C., Yamaguchi, N., Ai, H.S., Wang, Y.X., Zhang, Y.P. & Jiang, X.L. (2012) An estimation of Erinaceidae phylogeny: A combined analysis approach. Plos One, 7 (6), e393304.

    https://doi.org/10.1371/journal.pone.0039304

    Hebert, P.D.N., Cywinska, A., Ball, S.L. & DeWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B-Biological Sciences, 270 (1512), 313–321.

    https://doi.org/10.1098/rspb.2002.2218

    Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101 (41), 14812–14817.

    https://doi.org/10.1073/pnas.0406166101

    Herter, K. (1938) Die Biologie der europaischen Igel. Kleintier und Pelztier Leipzig, 14 (6), 1–22.

    ICZN (1999) International Code of Zoological Nomenclature. 4th Edition, The International Trust for Zoological Nomenclature, 306 pp.

    Jones, G. (2017) Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology, 74 (1–2), 447–467.

    https://doi.org/10.1007/s00285-016-1034-0

    Kim, D.H., Oh, D.S., Ahn, K.S. & Shin, S.S. (2012) An outbreak of Caparinia tripilis in a Colony of African Pygmy Hedgehogs (Atelerix albiventris) from Korea. Korean Journal of Parasitology, 50 (2), 151–156.

    https://doi.org/10.3347/kjp.2012.50.2.151

    Klimov, P.B. & OConnor, B.M. (2008) Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): evidence from three nuclear genes. Molecular Phylogenetics and Evolution, 47 (3), 1135–1156.

    https://doi.org/10.1016/j.ympev.2007.12.025

    Klimov, P.B. & OConnor, B.M. (2013) Is permanent parasitism reversible?—Critical evidence from early evolution of house dust mites. Systematic Biology, 62 (3), 411–423.

    https://doi.org/10.1093/Sysbio/Syt008

    Knowles, L. & Klimov, P.B. (2011) Estimating phylogenetic relationships despite discordant gene trees across loci: the species tree of a diverse species group of feather mites (Acari: Proctophyllodidae). Parasitology, 138 (13), 1750–1759.

    https://doi.org/10.1017/S003118201100031X

    Krumbiegel, I. (1931) Mammalia. In: Schulze, P.V. (Ed.), Biologie der Tiere Deutschlands. Borntraeger, Berlin, pp. 225–377.

    Lawrence, R.F. (1955) A new mange-mite from the Cape polecat. Annals of Tropical Medicine & Parasitology, 49 (1), 54–62.

    Leache, A.D. & Fujita, M.K. (2010) Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B-Biological Sciences, 277 (1697), 3071–3077.

    https://doi.org/10.1098/Rspb.2010.0662

    Liu, J.N., Jiang, J.M., Song, S.L., Tornabene, L., Chabarria, R., Naylor, G.J.P. & Li, C. (2017) Multilocus DNA barcoding—Species identification with multilocus data. Scientific Reports, 7, 16601.

    https://doi.org/10.1038/s41598-017-16920-2

    Maddison, W.P. & Maddison, D.R. (2016) Mesquite: a modular system for evolutionary analysis. Version 3.10. Available from http://mesquiteproject.org (accessed 24 November 2017)

    Mégnin, E. (1880) Les parasites et les maladies parasitaires chez l'homme, les animaux domestiques et les animaux sauvages avec lesquels ils peuvent étre en contact: insectes, arachnides, crustacés. Masson, Paris, 478 pp.

    Michael, A.D. (1889) On some unrecorded parasitic Acari found in Great Britain. Journal of the Linnean Society, 20 (123), pp. 400–406.

    Moreira, A., Troyo, A. & Calderon-Arguedas, O. (2013) First report of acariasis by Caparinia tripilis in African hedgehogs, (Atelerix albiventris), in Costa Rica. Revista Brasileira De Parasitologia Veterinaria, 22 (1), 155–158.

    https://doi.org/10.1590/S1984-29612013000100029

    Mullen, G.R. & OConnor, B.M. (2002) Mites (Acari). In: Mullen, G.R. & Durden, L. (Eds.), Medical and Veterinary Entomology. Academic Press, San Diego, CA, pp. 449–516.

    Mullen, G.R. & OConnor, B.M. (2009) Mites (Acari). In: Mullen, G.R. & Durden, L.A. (Eds.), Medical and Veterinary Entomology. 2nd Edition. Elsevier, Amsterdam and Boston, pp. 433–492.

    Murillo, P., Klimov, P.B., Hubert, J. & OConnor, B.M. (2018) Investigating species boundaries using DNA and morphology in the mite Tyrophagus curvipenis (Acari: Acaridae), an emerging invasive pest, with a molecular phylogeny of the genus Tyrophagus. Experimental & Applied Acarology, 75 (2), 167–189.

    https://doi.org/10.1007/s10493-018-0256-9

    Norton, R.A. (1998) Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Experimental and Applied Acarology, 22 (10), 559–594.

    Palopoli, M.F., Fergus, D.J., Minot, S., Pei, D.T., Simison, W.B., Fernandez-Silva, I., Thoemmes, M.S., Dunn, R.R. & Trautwein, M. (2015) Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages. Proceedings of the National Academy of Sciences of the United States of America, 112 (52), 15958–15963.

    https://doi.org/10.1073/pnas.1512609112

    Pegler, K.R., Evans, L., Stevens, J.R. & Wall, R. (2005) Morphological and molecular comparison of host-derived populations of parasitic Psoroptes mites. Medical and Veterinary Entomology, 19 (4), 392–403.

    https://doi.org/10.1111/j.1365–2915.2005.00586.x

    Prazeres, R.F., Kluyber, D., Fernandes, R.S., Teixeira, R.H.F., Amorim, M., Serra-Freire, N.M., et al. (2011) Sarna pelo ácaro Caparinia tripilis em dois porcos-espinho africanos ou "hedgehogs" (Atelerix albiventris) mantidos como animais de estimação. MEDVEP. Revista Científica de Medicina Veterinária. Pequenos Animais e Animais de Estimação, 9 (28), 116–119.

    Ramey, R.R., Kelley, S.T., Boyce, W.M. & Farrell, B.D. (2000) Phylogeny and host specificity of Psoroptic mange mites (Acarina : Psoroptidae) as indicated by ITS sequence data. Journal of Medical Entomology, 37 (6), 791–796.

    https://doi.org/10.1603/0022-2585-37.6.791

    Romero, C., Waisburd, G.S., Pineda, J., Heredia, R., Yarto, E. & Cordero, A.M. (2017) Fluralaner as a single dose oral treatment for Caparinia tripilis in a pygmy African hedgehog. Veterinary Dermatology, 28 (6), 622-e152.

    https://doi.org/10.1111/vde.12465

    Rossini, B.C., Oliveira, C.A.M., de Melo, F.A.G., Bertaco, V.D., de Astarloa, J.M.D., Rosso, J.J., et al. (2016) Highlighting Astyanax species diversity through DNA barcoding. PLoS One, 11 (12).

    https://doi.org/10.1371/journal.pone.0167203

    Roux, C., Fraisse, C., Romiguier, J., Anciaux, Y., Galtier, N. & Bierne, N. (2016) Shedding light on the grey zone of speciation along a continuum of genomic divergence. Plos Biology, 14 (12).

    https://doi.org/10.1371/journal.pbio.2000234

    Smith, M.A., Fisher, B.L. & Hebert, P.D.N. (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society B-Biological Sciences, 360 (1462), 1825–1834.

    https://doi.org/10.1098/rstb.2005.1714

    Srivathsan, A. & Meier, R. (2012) On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics, 28 (2), 190–194.

    https://doi.org/10.1111/j.1096-0031.2011.00370.x

    Staley, E.C., Staley, E.E. & Behr, M.J. (1994) Use of permethrin as a miticide in the African hedgehog (Atelerix albiventris). Veterinary and Human Toxicology, 36 (2), 138–138.

    Swofford, D.L. (2016) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0a150. Distributed by the author. Available from https://paup.phylosolutions.com/get-paup (accessed 24 November 2017)

    Toews, D.P.L. & Brelsford, A. (2012) The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21 (16), 3907–3930.

    https://doi.org/10.1111/j.1365-294X.2012.05664.x

    Wiemers, M. & Fiedler, K. (2007) Does the DNA barcoding gap exist? - a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology, 4, 1–16.

    https://doi.org/10.1186/1742-9994-4-8

    Williams, S.T. & Reid, D.G. (2004) Speciation and diversity on tropical rocky shores: A global phylogeny of snails of the genus Echinolittorina. Evolution, 58 (10), 2227–2251.

    https://doi.org/10.1111/j.0014-3820.2004.tb01600.x

    Wilson, D.E. & Reeder, D.M. (2005) Mammal Species of the World. A Taxonomic and Geographic Reference. 3rd Edition. Johns Hopkins University Press, Baltimore, 2142 pp.

    Witaliński, W., Dabert, J. & Walzl, M.G. (1992) Morphological adaptation for precopulatory guarding in astigmatic mites (Acari: Acaridida). International Journal of Acarology, 18 (1), 49–54.

    https://doi.org/10.1080/01647959208683928

    Yang, Z.H. (2015) The BPP program for species tree estimation and species delimitation. Current Zoology, 61 (5), 854–865.

    https://doi.org/10.1093/czoolo/61.5.854

    Yang, Z.H. & Rannala, B. (2017) Bayesian species identification under the multispecies coalescent provides significant improvements to DNA barcoding analyses. Molecular Ecology, 26 (11), 3028–3036.

    https://doi.org/10.1111/mec.14093

    Zahler, M., Essig, A., Gothe, R. & Rinder, H. (1998) Genetic evidence suggests that Psoroptes isolates of different phenotypes, hosts and geographic origins are conspecific. International Journal for Parasitology, 28 (11), 1713–1719.

    https://doi.org/10.1016/S0020-7519(98)00145-3