Skip to main content Skip to main navigation menu Skip to site footer
Type: Monograph
Published: 2018-11-12
Page range: 1–76
Abstract views: 121
PDF downloaded: 3

Systematics of the Australian spiny trapdoor spiders of the genus Blakistonia Hogg (Araneae: Idiopidae)

Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia. Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia
Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
Araneae taxonomy morphology arid zone Arbanitinae Arbanitini

Abstract

A combined molecular and morphological approach was used to revise the Australian spiny trapdoor spiders of the genus Blakistonia Hogg. Where possible, our molecular approach used sequence data from the COI barcoding gene, which were analysed using Bayesian, RAxML and neighbour-joining approaches. These molecular data were combined with morphology to describe and diagnose the genus, to redescribe the type (and only previously valid) species, B. aurea Hogg, 1902, and to diagnose, describe and map 19 new species: B. bassi sp. n., B. bella sp. n., B. birksi sp. n., B. carnarvon sp. n., B. emmottiorum sp. n., B. gemmelli sp. n., B. hortoni sp. n., B. mainae sp. n., B. maryae sp. n., B. newtoni sp. n., B. nullarborensis sp. n., B. olea sp. n., B. parva sp. n., B. pidax sp. n., B. plata sp. n., B. raveni sp. n., B. tariae sp. n., B. tunstilli sp. n., and B. wingellina sp. n. The genus Blakistonia is found to be distributed throughout the Australian arid and semi-arid zones, from the Wheatbelt region of Western Australia to central Queensland and western Victoria.

 

References

  1. Brandle, R. (1998) A Biological Survey of the Stony Deserts, South Australia, 1994–1997. Heritage and Biodiversity Section, Department for Environment, Heritage and Aboriginal Affairs, South Australia. Available from: https://data.environment.sa.gov.au/Content/Publications/Stony-Deserts-SA-BioSurvey.pdf (accessed 12 September 2016)

    Castalanelli, M.A., Teale, R., Rix, M.G., Kennington, J.W. & Harvey, M.S. (2014) Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebrate Systematics, 28, 375–385.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

    Harrison, S.E., Harvey, M.S., Cooper, S.J.B., Austin, A.D. & Rix, M.G. (2017) Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PLoS One, 12, e0180139.
    https://doi.org/10.1371/journal.pone.0180139

    Harrison, S.E., Rix, M.G., Harvey, M.S. & Austin, A.D. (2016) An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia. Austral Entomology, 55, 208–216.
    https://doi.org/10.1111/aen.12172

    Harvey, M.S. (2002) Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics, 16, 555–570.
    https://doi.org/10.1071/IS02009

    Harvey, M.S., Rix, M.G., Framenau, V.W., Hamilton, Z.R., Johnson, M.S., Teale, R.J., Humphreys, G. & Humphreys, W.F. (2011) Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes. Invertebrate Systematics, 25, 1–10.
    https://doi.org/10.1071/IS11011

    Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.
    https://doi.org/10.1093/bioinformatics/17.8.754

    Hogg, H.R. (1902) On some additions to the Australian spiders of the suborder Mygalomorphae. Proceedings of the Zoological Society of London, 72, 121–142.

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.
    https://doi.org/10.1093/bioinformatics/bts199

    Keighery, G.J. (2004) State Salinity Strategy biological survey of the Western Australian wheatbelt: background. Records of the Western Australian Museum Supplement, 67, 1–6.
    https://doi.org/10.18195/issn.0313-122x.67.2004.001-006

    Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
    https://doi.org/10.1007/BF01731581

    Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
    https://doi.org/10.1093/molbev/msw054

    Lanfear, R., Calcott, B., Ho, S. & Guidon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.
    https://doi.org/10.1093/molbev/mss020

    Main, B.Y. (1962) Adaptive responses and speciation in the spider genus Aganippe Cambridge. In: Leeper, G.W. (Ed.), The Evolution of Living Organisms. Melbourne University Press, Melbourne, pp. 359–369.

    Main, B.Y. (1964) Spiders of Australia: A Guide to their Identification with Brief Notes on the Natural History of Common Forms. Jacaranda Press, Brisbane, 124 pp.

    Main, B.Y. (1982) Adaptions to arid habitats by mygalomorph spiders. In: Evolution of the Flora and Fauna of Arid Australia. Peacock Publications, Frewville, pp. 273–283.

    Main, B.Y. (1985) Further studies on the systematics of ctenizid trapdoor spiders: a review of the Australian genera (Araneae: Mygalomorphae: Ctenizidae). Australian Journal of Zoology Supplementary Series, 108, 1–84.
    https://doi.org/10.1071/AJZS108

    Main, B.Y. (1987) Persistence of invertebrates in small areas: case studies of trapdoor spiders in Western Australia. In: Saunders, D.A., Arnold, G.W., Burbidge, A.A. & Hopkins, A.J.M. (Eds.), Nature Conservation: The Role of Remnants of Native Vegetation. Surrey Beatty and Sons Pty Limited in association with CSIRO and CALM, Chipping Norton, pp. 29–39.

    Mason, L.D., Wardell-Johnson, G. & Main, B.Y. (2018) The longest-lived spider: mygalomorphs dig deep, and persevere. Pacific Conservation Biology, 24, 203–206.
    https://doi.org/10.1071/PC18015

    Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop, New Orleans, LA, pp. 1–8.

    Parmakelis, A., Stathi, I., Spanos, L., Louis, C. & Mylonas, M. (2006) Phylogeography of Iurus dufoureius (Brulle, 1832) (Scorpiones, Iuridae). Journal of Biogeography, 33, 251–260.
    https://doi.org/10.1111/j.1365-2699.2005.01386.x

    Rainbow, W.J. (1914) Studies in the Australian Araneidae. No. 6. The Terretelariae. Records of the Australian Museum, 10, 187–270.
    https://doi.org/10.3853/j.0067-1975.10.1914.901

    Rainbow, W.J. & Pulleine, R.H. (1918) Australian trap-door spiders. Records of the Australian Museum, 12, 81–169.
    https://doi.org/10.3853/j.0067-1975.12.1918.882

    Rambaut, A. & Drummond, A.J. (2010) FigTree v1.3.1. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 10 October 2018)

    Rambaut A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer v1.6, Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 10 October 2018)

    Rix, M.G., Cooper, S.J.B., Meusemann, K., Klopfstein, S., Harrison, S.E., Harvey, M.S. & Austin, A.D. (2017a) Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae). Molecular Phylogenetics and Evolution, 109, 302–320.
    https://doi.org/10.1016/j.ympev.2017.01.008

    Rix, M.G., Huey, J., Main, B.Y., Waldock, J.M., Harrison, S.E., Comer, S., Austin, A.D. & Harvey, M.S. (2017b) Where have all the spiders gone? Highlighting the decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomology, 56, 14–22.
    https://doi.org/10.1111/aen.12258

    Rix, M.G., Raven, R.J., Main, B.Y., Harrison, S.E., Austin, A.D., Cooper, S.J. & Harvey, M.S. (2017c) The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level. Invertebrate Systematics, 31, 566–634.
    https://doi.org/10.1071/IS16065

    Rodríguez, F., Oliver, J.F., Marín, A. & Medina, J.R. (1990) The general stochastic model of nucleotide substitutions. Journal of Theoretical Biology, 142, 485–501.
    https://doi.org/10.1016/S0022-5193(05)80104-3

    Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
    https://doi.org/10.1093/bioinformatics/btg180

    Simon, E. (1903) Histoire naturelle des araignées. Encyclopédie Roret, Paris, 2, 669–1080.

    Stamatakis, A. (2014) RAxML Version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics, 30, 1312–1313.
    https://doi.org/10.1093/bioinformatics/btu033

    Strand, E. (1907) Aviculariidae und Atypidae des Kgl. Naturalien-kabinetts in Stuttgart. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemburg, 63, 1–100.

    Yang, Z. (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology and Evolution, 11, 367–372.
    https://doi.org/10.1016/0169-5347(96)10041-0