Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2018-09-07
Page range: 71–99
Abstract views: 185
PDF downloaded: 2

Reevaluation of the intraspecific variability in Darevskia parvula (Lantz & Cyren, 1913): an integrated approach using morphology, osteology and genetics (Squamata: Lacertidae)

Avda. Francisco Cambó 23, E-08003 Barcelona, Spain.
Dokuz Eylül University, Faculty of Science, Department of Biology, 35160, Buca, İzmir, Turkey.
Dokuz Eylül University, Faculty of Science, Department of Biology, 35160, Buca, İzmir, Turkey.
Reptilia Darevskia parvula D. adjarica stat. nov. caucasic rock lizards distribution morphometry meristic scalation characters multivariate analyses CDA PCA ANOSIM MST UPGMA osteology genetic differentiation northeastern Anatolia Turkey Georgia

Abstract

The intraspecific variability of Darevskia parvula (which has two classical subspecies easily identifiable by external characteristics, D. p. parvula and D. p. adjarica), was studied using various approaches including morphology (scalation and biometry), multivariate analyses (PCA, CDA, ANOSIM, UPGMA and MST), osteology, and molecular techniques. High mitochondrial distance, differences at the nuclear level and morphological distinctiveness warrant the specific status of both taxa, Darevskia parvula (Lantz & Cyrén, 1913) and Darevskia adjarica (Darevsky & Eiselt, 1980) stat. nov. A lectotype for D. parvula, originally described with syntypes of both species -D. parvula and D. adjarica- is designated. The uncorrected genetic distance between D. parvula and D. adjarica in the cytochrome b mitochondrial gene is 14.4% ± 1.9%. Intraspecific variability within D. parvula is very small (1.5% ± 0.5%), and was not detected in our samples of D. adjarica. The two species further differ by two mutations in the nuclear melano-cortin 1 receptor (mc1r) gene. Interestingly, past introgression of D. parvula mitochondrial haplotypes (5% ± 1% different to those currently known) into some D. adjarica has been detected in one locality; all the studied specimens of D. adjarica with mtDNA of D. parvula are unmistakably D. adjarica at the morphological and nuclear levels.

Morphologically, there is almost no overlap between D. parvula and D. adjarica. These results are corroborated by CDA, MST and UPGMA trees. Specimens of the inland high mountain population of Ardahan (clearly D. adjarica in CDA, MST and UPGMA trees) occupy a somewhat intermediate position between both taxa in the PCA (when specimens and not populations as a whole are considered), but this morphological closeness may be attributed to the influence of climatic factors (continental conditions) on scalation of the specimens. Males appear to be more differentiated than females. Overlap among samples within each species is very marked; none can be separated clearly from its conspecifics. This is even more marked in D. parvula, which has a fairly small area compared to D. adjarica.

Darevskia parvula and D. adjarica samples appear to be homogeneously clustered within species and well separated between the two species in the UPGMA trees. In males and females all the D. parvula samples are very similar and moderately differentiated. In males of D. adjarica, the most differentiated seems to be adjBorçka, the others all being clustered together, with adjÇaykara showing slightly more differentiation from the rest (adjOrtacalar, adjArdahan, adjIkizdere and adjÇermik).

Darevskia adjarica females are also similarly distributed into two subgroups, one including Borçka, Çermik and Ardahan and the other including Ortacalar, Ikizdere and Çaykara. In both sexes, the inland Ardahan sample clearly belongs to D. adjarica.

From the most connected MST samples, speculations can be made about areas of origin and expansion of the different taxa. Ortacalar (D. adjarica) and Hatila (D. parvula) are the most connected (morphologically more “central” in both taxa); in fact, both populations are relatively close, living on the northern (Black Sea) and southern (Anatolian) facing slopes, respectively of the Doğu Karadeniz Mountains (Kaçkar Mountains). This highlights these mountains, which rise from sea level up to nearly 4000 m asl. and have wide buffering possibilities against climate changes, as a zone of refuge and posterior dispersion of this species, and even of the original splitting into two taxa adapted to these different conditions, D. adjarica on the coast and D. parvula on the continental slope.

Osteologically D. parvula and D. adjarica are very similar, although Georgian specimens from an isolated population (Atskuri) have closed clavicles not found in Turkish D. adjarica. Also, inland Ardahan D. adjarica have an extra vertebra in both males and females, compared to the other studied specimens from both species.

The present study indicates that the situation in Turkey is that D. parvula is well differentiated and lives around the Çoruh River Valley, contoured by D. adjarica populations on the coastal-facing slopes of the Doğu Karadeniz Mountains on one side, and the Yalnızçam Mountains on the other side, where D. adjarica enters from Georgia as the opposite extreme of a geographic distribution. The attribution of more inland ranges to D. parvula or D. adjarica, as well as the detailed genetic structure of both taxa may be confirmed with more specific studies.

 

References

  1. Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N. & Csaki, F. (Eds.), Information theory and an extension of the maximum likelihood principle. Akademiai Kiado, Budapest, pp. 267–281.

    Ananjeva, N.B., Orlov, N.L., Khalikov, R.G., Darevsky, I.S., Ryabov, I.S. & Barabanov, A.V. (2006) An Atlas of the Reptiles of North Eurasia. Taxonomic Diversity, Distribution, Conservation Status. Pensoft Series Faunistica, 47, 1–250.

    Arenas, C., Cuadras, C.M. & Fortiana, J. (1991) MULTICUA. Paquete no estandard de Análisis Multivariante. Pub. Univ. Barcelona, Barcelona, 170 pp.

    Arnold, E.N. (1973) Relationships of the Palaearctic lizards assigned to the genera Lacerta, Algyroides and Psammodromus (Reptilia: Lacertidae). Bulletin of the British Museum (Natural History) Zoology, London, 25 (8), 289–366.

    Arribas, O.J. (1997) Morfología, filogenia y biogeografía de las lagartijas de alta montaña de los Pirineos. PhD. Thesis, Universidad Autónoma de Barcelona, Bellaterra, 353 pp.

    Arribas, O.J. (1998) Osteology of the Pyrenean mountain lizards and comparison with other species of the collective genus Archaeolacerta MERTENS, 1921 s.l. from Europe and Asia Minor. Herpetozoa, 11 (1/2), 47–70.

    Arribas, O.J. (1999) Phylogeny and relationships of the mountain lizards of Europe and Near East (Archaeolacerta MERTENS, 1921 sensu lato) and their relationships among the Eurasian lacertid radiation. Russian Journal of Herpetology, 6 (1), 1–22.

    Arribas, O.J. (2010) Intraspecific variability of the Carpetane Lizard (Iberolacerta cyreni [Müller & Hellmich, 1937]) (Squamata: Lacertidae), with special reference to the unstudied peripheral populations from the Sierras de Avila (Paramera, Serrota and Villafranca). Bonn Zoological Bulletin, 57 (2), 197–210.

    Arribas, O.J. (2012) Osteology of Darevskia defilippi (CAMERANO, 1877) raises doubts: Is it really a close relative of Darevskia raddei (BOETTGER, 1892)? Herpetozoa, 25 (1/2), 72–74.

    Arribas, O.J. & Odierna, G. (2004) Karyological and osteological data supporting the specific status of Iberolacerta (cyreni) martinezricai (ARRIBAS, 1996). Amphibia-Reptilia, 25 (3), 359–367.
    https://doi.org/10.1163/1568538042788942

    Arribas, O., Carranza, S. & Odierna, G. (2006) Description of a new endemic species of mountain lizard from Northwestern Spain: Iberolacerta galani sp. nov. (Squamata: Lacertidae). Zootaxa, 1240, 1–55.

    Baran, I. & Atatür, M.K. (1998) Turkish Herpetofauna (Amphibians and Reptiles). Republic of Turkey Ministry of Environment, Ankara, 214 pp.

    Baran, I., Tosunoglu, M., Kaya, U. & Kumlutas, Y. (1997) Çamlıhemşin (Rize) civarının herpetofaunasi hakkında. Turkish Journal of Zoology, 21, 409–416.

    Baran, I., Kumlutaş, Y., Tok, C.V., Ilgaz, C., Kaska, Y., Olgun, K., Türkozan, O. & Iret, F. (2004) On two herpetological collections made in East Anatolia (Turkey). Herpetozoa, 16 (3/4), 99–114.

    Basoğlu, M. & Baran, I. (1977) Türkiye Sürüngenleri, Kısım I, Kaplumbağa ve Kertenkeleler [Turkish Reptiles. Part I. Turtles and Lizards]. Ege Üniversitesi Kitaplar Serisi, 76, 1–219.

    Blackiht, R.E. & Reyment, R. A. (1971) Multivariate morphometrics. Academic Press, London & New York, 412 pp.

    Bodenheimer, F.S. (1944) Introduction into the knowledge of the Amphibia and Reptilia of Turkey. Revue de la Faculté des Sciences de l’Universite d’Istanbul, Series B, 9, 1–78.

    Carranza, S., Arnold, E.N. (2012) A review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species. Zootaxa, 3378, 1–95.

    Ciobanu, D.G., Roudykh, I.A., Ryabinina, N.L., Grechko, V.V., Kramerov, D.A. & Darevsky, I.S. (2002) Reticulate evolution of parthenospecies of the Lacertidae rock lizards: Inheritance of CLsat tandem repeats and anonymous RAPD markers. Molecular Biology, 36 (2), 223–231.
    https://doi.org/10.1023/A:1015369906292

    Ciobanu, D.G., Grechko, V.V. & Darevsky, I.S. (2003) Molecular evolution of satellite DNA CLsat in lizards from the Genus Darevskia (Sauria: Lacertidae): Correlation with species diversity. Russian Journal of Genetics, 39 (11), 1292–1305.
    https://doi.org/10.1023/B:RUGE.0000004145.00165.ee

    Clark, R.J. & Clark, E.D. (1973) Collection of Amphibians and Reptiles from Turkey. Occasional Papers of the California Academy of Sciences, 104, 1–62.

    Clarke, K.R. (1988) Detecting change in benthic community structure. In: Oger, R. (Ed.), Proceedings of invited papers, 14th international biometric conference, Namour, Belgium, 1988, pp. 131 –142.

    Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143.
    https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Darevsky, I.S. (1967) Rock lizards of the Caucasus (Systematics, Ecology and Phylogenesis of the polymorphic groups of Rock lizards of the Subgenus Archaeolacerta). Nauka press, Leningrad, 216 pp. [translation: Indian National Scientific Documentation Centre, New Delhi, 276 pp.]

    Darevsky, I.S. & Eiselt, J. (1980) Neue Felseneidechsen (Reptilia: Lacertidae) aus dem Kaukasus und aus der Türkei. Amphibia-Reptilia, 1 (1), 29–40.
    https://doi.org/10.1163/156853880X00042

    Darevsky, I.S. & Lukina, G.P. (1977) Rock lizards of the Lacerta saxicola Eversmann group (Sauria, Lacertidae) collected in Turkey by Richard and Erica Clark. Proceedings of the Zoological Institute of the Academy of Sciences, 74, 60–63.

    Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) JModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.
    https://doi.org/10.1038/nmeth.2109

    Durfort, M. (1978) Tècniques de transparentat d'invertebrats i d'esquelets de vertebrats: aplicacions. Circulars Institució Catalana D'Història Natural, 1, 1–9.

    Franzen, M. (1990) Die Eidechsenfauna (Lacertidae) der Türkei. Die Eidechse, 1990 (1), 3–9.

    Frotzler, N. & Bader, T. (2007) Herpetologische Exkursion nach Georgien. 3–20 May 2007. Available from: http://www.herpetofauna.at/index.php/reiseberichte/15-berichte/62-herpetologische-exkursion-nach-georgien-3-20-mai-2007 (accessed 15 October 2014)

    Fu, J (1999) Phylogeny of Lacertid Lizards (Squamata: Lacertidae) and the evolution of Unisexuality. PhD. Thesis, University of Toronto, Toronto, V + 168 pp.

    Fu, J. (2000) Toward the phylogeny of the family Lacertidae. Why 4708 base pair of mtDNA sequences cannot draw the picture. Biological Journal of the Linnean Society, 71, 203–217.

    Fu, J., Murphy, R.W. & Darevsky, I.S. (1997) Towards the phylogeny of Caucasian rock lizards: implications from mitochondrial DNA gene sequences. Zoological Journal of the Linnean Society, 121, 463–477.
    https://doi.org/10.1111/j.1096-3642.1997.tb01283.x

    Grechko, V.V., Ryabinin, D.M., Fedorova, L.V., Fedorov, A.N., Ryskov, A.P. & Darevsky, I.S. (1997) Parentage of Caucasian parthenogenetic rock lizard species (Lacerta) as revealed by restriction endonuclease analysis of highly repetitive DNA. Amphibia-Reptilia, 18 (4), 407–418.
    https://doi.org/10.1163/156853897X00459

    Grechko, V.V., Fedorova, L.V., Ryabinina, N.L., Ciobanu, D.G., Kosushkin, S.A. & Darevsky, I.S. (2006) The use of nuclear DNA molecular markers for studying speciation and systematics as exemplified by the “Lacerta agilis complex” (Sauria: Lacertidae). Molecular Biology, 40 (1), 51–62.
    https://doi.org/10.1134/S0026893306010092

    Guindon, S., Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate
    large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.
    https://doi.org/10.1080/10635150390235520

    Henderson, P. A. & Seaby, R.M.H. (2007) Community Analysis Package 4.0. Pisces Conservation Ltd, Lymington, 164 pp. Available from: http://www.pisces-conservation.com (accessed 7 August 2018)

    Hintze, J. (2007) NCSS, PASS and GESS. Number Cruncher Statistical Systems. Kaysville, Utah. Available from: http://www.NCSS.com (accessed 7 August 2018)

    Ilgaz, Ç. (2009) Comparative morphology of Darevskia parvula (Lantz-Cyren 1936) (Sauria: Lacertidae) subspecies in Northeastern Anatolia, Turkey. North-Western Journal of Zoology, 5 (2), 263–280.

    Lantz, L.A. & Cyrén, O. (1913) Eine neue Varietät der Felseneidechse Lacerta saxicola EVERSMANN parvula nov. var. Mitteilungen Kaukasus Museum, 7 (2), 163–168.

    Lantz, L.A. & Cyrén, O. (1936) Contribution à la connaissance de Lacerta saxicola Eversmann. Bulletin de la Société Zoologique de France, 61, 159–181.

    Legendre, P. & Legendre, L. (1998) Numerical Ecology. Elsevier Science B. V., Amsterdam, 853 pp.

    Lincoln, R.J., Boxhall, G.A. & Clark, P.F. (1998) A dictionary of Ecology, Evolution and Systematics. Cambridge University Press, Cambridge, 371 pp.

    Méhely, L. (1909) Materialien zu einer Systematik und Phylogenie der Muralis-ähnlichen Lacerten. Annales Historico-Naturales Musei Nationalis Hungarici, 7, 409–621.

    Murphy, R.W., Darevsky, I.S., MacCulloch, R.D., Fu, J. & Kupriyanova, L.A. (1996) Evolution of the bisexual species of Caucasian rock lizards: A phylogenetic evaluation of allozyme data. Russian Journal of Herpetology, 3 (1), 18–31.

    Murphy, R.W., Fu, J., MacCulloch, R.D., Darevsky, I.S. & Kupriyanova, L.A. (2000) A fine line between sex and unisexuality: the phylogenetic constrains on parthenogenesis in lacertid lizards. Zoological Journal of the Linnean Society, 130 (4), 527–549.
    https://doi.org/10.1111/j.1096-3642.2000.tb02200.x

    Nesterov, P.W. (1912) Zur Herpetologie des südwestlichen Transkaukasiens und des angrenzenden Teiles von Kleinasien. Ezhegodnik Zoologicheskii muzei, Akademiia nauk SSSR, 17, 61–85.

    Nikolsky, A.M. (1910) Lacerta muralis Laur. et les especes voisines dans les limites de la Russie. Annuaire Musée Zoologique de l’Académie Impériale des Sciences de St.-Pétersbourg, 15, 490–498.

    Nikolsky, A.M. (1913) Reptiles and amphibians of the Caucasus (Herpetologia Caucasia). The Caucasus Museum Publishing, Tiflis, 272 pp. [in Russian]

    Orlova, V.F. (1978) Geografičeskaja izmenčiwost I opisanije lektotipa artwinskoj jaščericy Lacerta derjugini Nikolskij. In: Issljedowanija po faune SSSR. Archives of Zoological Museum Moscow State University, 17, 188–203.

    Rohlf, J. (2000) NTSYSpc. Version 2.1. User Guide. Exeter Software ed.,Setauket, New York, 38 pp.

    Schmidtler, J.F. (1986) Orientalische smaragdeidechsen: 3. Klimaparallele Pholidosevariation. Salamandra, 22 (4), 242–258.

    Schmidtler, J.F., Heckes, U., Bischoff, W. & Franzen, M. (2002) Höhenabhängige Merkmalsvariation bei Felseidechsen des Darevskia clarkorum (Darevsky & Vedmerja, 1977). D. dryada (Darevsky & Tuniyev, 1997)—Komplexes: Ein Fall von klimaparalleler Pholidosevariation?. Faunistische Abhandlungen Staatliches Museum für Tierkunde in Dresden, 23 (8), 141–156.

    Silvestro, D. & Michalak, I. (2012) RaxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution, 12, 335–337.
    https://doi.org/10.1007/s13127-011-0056-0

    Sindaco, R., Venchi, A., Carpaneto, G.M. & Bologna, M.A. (2000) The reptiles of Anatolia: a checklist and zoogeographical analysis. Biogeographia, 2000, 441–554.
    https://doi.org/10.21426/B6110017

    Sokal, R.R. & Rohlf, J. (1969) Biometry. The principles and practice of statistics in Biological research. W.F. Freeman and C., New York, 776 pp.

    Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.
    https://doi.org/10.1093/bioinformatics/btl446

    Szczerbak, N.N. (2003) Guide to the Reptiles of the Eastern Palearctic. Krieger Publishing Company, Malabar, Florida, 260 pp.

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, evolutionary distance, and Maximum Parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
    https://doi.org/10.1093/molbev/msr121

    Taylor, W.R. (1967) An enzyme method of clearing and staining small ve
    https://doi.org/10.5479/si.00963801.122-3596.1rtebrates. Proceedings of the United States National Museum, 122 (3596), 1–17.

    Tuniyev, B. (1990) On the independence of the Colchis Center of amphibian and reptile Speciation. Asiatic Herpetological Research, 3, 67–84.