Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2018-06-13
Page range: 542–560
Abstract views: 52
PDF downloaded: 1

Luciobarbus lanigarensis and L. numidiensis, two new species of barbels from the Mediterranean Sea basin in North Africa (Teostei: Cyprinidae)

Zoogeography Research Unit, Department of Biology, Ecology and Evolution, University of Liège, Chemin de la vallée 4 (Bât. B22) 4000 Sart Tilman, Belgium.
Zoogeography Research Unit, Department of Biology, Ecology and Evolution, University of Liège, Chemin de la vallée 4 (Bât. B22) 4000 Sart Tilman, Belgium.
Earth and life Institute, Biodiversity research Center, UCL-17. 07. 04, Bâtiment Carnoy, Croix du Sud, 5, B-1348, Louvain-la-Neuve, Belgium. Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium.
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany.
Pisces North Africa Mediterranean biodiversity hotspot news species Morphology Cytochome b D-loop control

Abstract

Two new species of Luciobarbus are described from the Mediterranean Sea basin in Morocco and Algeria. Their monophyly and phylogenetic placement are resolved by molecular analyses using two mitochondrial markers (cyt b and D-loop). Luciobarbus lanigarensis, new species, from the Tafna River drainage in Algeria and Morocco, is distinguished by having orange fins, a great predorsal length (52–59% SL) and a very long pectoral fin (79–90% HL). Luciobarbus numidiensis, new species, from the El-Kébir River drainage in Algeria, is distinguished by having a golden pectoral-fin margin, 43–47+1–3 lateral line scales and a very long anal-fin (19–23%).

 

References

  1. Bazinet, A.L., Zwikhl, D.J. & Cummings, M.P. (2014) Agateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Systematic Biology, 63, 812–818.
    https://doi.org/10.1093/sysbio/syu031

    Brahimi, A., Freyhof, J., Henrard, A. & Libois, R. (2017) Luciobarbus mascarensis and Luciobarbus chelifensis (Cyprinidae): two new species in Algeria. Zootaxa, 4277 (1), 32–50.
    https://doi.org/10.11646/zootaxa.4277.1.3

    Casal-Lopez, M., Perea, S., Yahyaoui, A. & Doadrio, I. (2015) Taxonomic review of the genus Luciobarbus Heckel; 1843 (Actinopterygii, Cyprinidae) from northwestern Morocco with the description of three new species. Graellsia, 71, 1–24
    https://doi.org/10.3989/graellsia.2015.v71.135

    Clavero, M., Qninba, A., Riesco, M., Esquivias, J., Calzada, J. & Delibes, M. (2017) Fish in Mo- roccan desert rives: the arid extreme of Mediterranean streams. Fishes in Mediterranean Environments, 003, 1–21.
    https://doi.org/10.29094/FiSHMED.2017.003

    Doadrio, I., Casal-López, M. & Perea, S. (2016a) Taxonomic remarks on Barbus moulouyensis Pellegrin, 1924 (Actinopterygii, Cyprinidae) with the description of a new species of Luciobarbus Heckel, 1843 from Morocco. Graellsia, 72, 1–24.
    https://doi.org/10.3989/graellsia.2016.v72.174

    Doadrio, I., Casal-López, L. Perea, S. & Yahyaoui, A. (2016b) Taxonomy of rheophilic Luciobarbus Heckel, 1842 (Actinopterygii, Cyprinidae) from Morocco with the description of two new species. Graellsia, 72, 1–17.
    https://doi.org/10.3989/graellsia.2015.v71.135

    Felsenstein, J. (1981) Evolutionary tree from DNA sequences, a maximum likelihood approach, Journal of Molecular Evolution, 17, 368–376.
    https://doi.org/10.1007/BF01734359

    Geiger, M.F., Herder, F., Monaghan, M.T., Almada, V., Barbieri, R., Bariche, M., Berrebi, P., Bohlen, J., Casal-Lopez, M., Delmastro, G.B. Denys, G.P., Dettai, A., Doadrio, I., Kalogianni, E., Kärst, H., Kottelat, M., Kovačić, M., Laporte, M., Lorenzoni, M., Marčić, Z., Özuluğ, M., Perdices, A., Perea, S., Persat, H., Porcelotti, S., Puzzi, C., Robalo, J., Šanda, R., Schneider, M., Šlechtová, V., Stoumboudi, M., Walter, S. & Freyhof, J. (2014) Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Molecular Ecology Resources, 14, 1210–1221.
    https://doi.org/10.1111/1755-0998.12257

    Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biolology and Evolution, 27, 221–224.
    https://doi.org/10.1093/molbev/msp259

    Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating of the human-ape split by a molecular clock by michondrial DNA. Journal of Molecular Evolution, 22, 160–174.
    https://doi.org/10.1007/BF02101694

    Iguchi, K., Tanimura, Y. & Nishida, M. (1997) Sequence divergence in the mtDNA control region of amphidromous and landlocked forms of ayu. Fish Sciences, 63, 901–905.
    https://doi.org/10.2331/fishsci.63.901

    Katoh, K. & Standley, D.M. (2013) MAFFT Multiple sequence alignment Software Version 7. Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.
    https://doi.org/10.1093/molbev/mst010

    Kimura, M. (1980) Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, 78, 454–458.
    https://doi.org/10.1073/pnas.78.1.454

    Kottelat, M. & Freyhof, J. (2007). Handbook of European Freshwater Fishes. Cornol, Suisse, xiv + 646 pp.

    Lanave, C., Preparata, G., Saccone, C. & Serio, G. (1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution, 20, 86–93.
    https://doi.org/10.1007/BF02101990

    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biolology and Evolution, 34, 772–773.
    https://doi.org/10.1093/molbev/msw260

    Nishida, M., Ohkawa, T. & Iwata, H. (1998) Methods of analysis of genetic population structure with mitochondrial DNA markers. Fish Genetics and Breeding Science, 26, 81–100.
    https://doi.org/10.1371/journal.pone.0179706

    Palumbi, S.R. (1996) Nucleic acids II: The polymerase chain reaction. In: Hillis, D.M., Moritz, C. & Mable, B.K. (Eds.), Molecular Systematic. 2nd Edition. Sinauer, Sunderland, MA, pp. 5–247.

    Perdices, A. & Doadrio, I. (2001) The molecular systematics and biogeography of the European cobitids based on mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 19, 468–478.
    https://doi.org/10.1006/mpev.2000.0900

    Rambaut, A. (2009) FigTree. Version 1.4.2. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 2 May 2017)

    Rodríguez, F., Oliver, J.L., Marín, A. & Medina, J.R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142 (4), 485–501.
    https://doi.org/10.1016/S0022-5193(05)80104-3

    Ronquist. F., Teslenko, M., Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2. Efficient Bayesian phylogenetic inference and model choice across a large, model space. Systematic Biology, 61, 539–542.
    https://doi.org/10.1093/sysbio/sys029

    Sukumaran, J. & Holder, M.T. (2010) DendroPy, a Python library for phylogenetic computing. Bioinformatics, 26, 1569–1571.
    https://doi.org/10.1093/bioinformatics/btq228

    Sukumaran, J. & Holder, M.T. (2015) SumTrees. Phylogenetic tree Summarization, 4.0.0 Available from: https://github.com/ jeetsukumaran/Dendrophy (accessed 2 May 2017)

    Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564–577.
    https://doi.org/10.1080/10635150701472164

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) Molecular Evolutionary Genetics Analysis: MEGA version 6.0. Molecular Biology and Evolution 30, 2725–2729.
    https://doi.org/10.1093/molbev/mst197

    Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences (American Mathematical Society), 17, 5786.