Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2016-03-15
Page range: 219–230
Abstract views: 41
PDF downloaded: 1

A molecular phylogenetic study on South Korean Tettigonia species (Orthoptera: Tettigoniidae) using five genetic loci: The possibility of multiple allopatric speciation

Applied Entomology Division, Department of Agricultural Biology, National Academy of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of KOREA
Applied Entomology Division, Department of Agricultural Biology, National Academy of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of KOREA
Biological Resources Research Department, National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of KOREA
Applied Entomology Division, Department of Agricultural Biology, National Academy of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of KOREA
Applied Entomology Division, Department of Agricultural Biology, National Academy of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of KOREA
Applied Entomology Division, Department of Agricultural Biology, National Academy of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of KOREA
Orthoptera Tettigonia ussuriana T. dolichoptera dolichoptera multiple genetic loci allopatric speciation cryptic speciation Korea

Abstract

In Korea, members of the genus Tettigonia have been known as two species, T. ussuriana and T. dolichoptera dolichoptera. However, the taxonomic status of the Jeju Island population of T. ussuriana (JJ-TU) is in question, relative to the mainland population (ML-TU), because of their different body sizes and ratios of wing length. To clarify the relatedness of JJ-TU and ML-TU, we examined the genetic variation and phylogenetic relationships within and between T. ussuriana and related species collected in South Korea, using five genetic loci: three mitochondrial genes (cytochrome c oxidase subunit 1 [CO1], cytochrome c oxidase subunit 2 [CO2], NADH dehydrogenase 1 [ND1]) and two nuclear loci (second internal transcribed spacer [ITS2], and tubulin alpha-1 [TA1]). Unexpectedly, the JJ-TU population is explicitly sister to T. d. dolichoptera, with low genetic distance (0.76–1.22% in CO1), indicating no direct connection with the ML-TU population; this finding suggests a recent divergence involving rapid morphological change without gene flow between JJ-TU and mainland T. d. dolichoptera. The separation of these populations from their common ancestor was caused by geographical isolation during last glacial age. This finding indicates that the JJ-TU population should be elevated to the rank of subspecies, at the very least. Furthermore, the ML-TU population was also revealed to have four genetically divided groups (group A–D) from four localized populations, but no significant morphological differences exist among them. The genetic difference (range 3.19–4.10% in CO1) between group A + B and C + D was especially large, suggesting that cryptic speciation has widely occurred within the mainland areas, caused by allopatric isolations resulting from mountain barriers.

 

References

  1. Arnedo, M.A., Oromí, P., Abreu, S.M.D. & Ribera, C. (2008) Biogeographical and evolutionary patterns in the Macaronesian shield-backed katydid genus Calliphona Krauss, 1892 (Orthoptera: Tettigoniidae) and allies as inferred from phylogenetic analyses of multiple mitochondrial genes. Systematic Entomology, 33 (1), 145–158.
    http://dx.doi.org/10.1111/j.1365-3113.2007.00393.x

    Avise, J.C., Walker, D. & Johns, G.C. (1998) Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceeding of the Royal Society of London B, 265 (1407), 1707–1712.
    http://dx.doi.org/10.1098/rspb.1998.0492

    Cho, P.S. (1959) A manual of the Orthoptera of Korea. Human & Natural Science, Korea University, 4, 131–198. [in Korean]

    Cho, P.S. (1969) Arthropoda, Insecta, Orthoptera. In: Cho, P.S. (Ed.), Illustrated encyclopedia of fauna & flora of Korea. Vol. 10. Insecta (II). Samha publishing company, Seoul, pp. 713–800. [in Korean]

    Collins, F.H. & Paskewitz, S.M. (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Molecular Biology, 5 (1), 1–9.
    http://dx.doi.org/10.1111/j.1365-2583.1996.tb00034.x

    Cooper, E.M., Lunt, P.H., Ellis, J.S. & Knight, M.E. (2013) Biogeographical patterns of variation in Western European populations of the great green bush-cricket (Tettigonia viridissima; Orthoptera Tettigoniidae). Journal of Insect Conservation, 17 (3), 431–440.
    http://dx.doi.org/10.1007/s10841-012-9525-9

    Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) “jModelTest 2: more models, new heuristics and parallel computing”. Nature Methods, 9 (8), 772.
    http://dx.doi.org/10.1038/nmeth.2109

    Doi, H. (1936) Miscellaneous note on Insect 7. Journal of Chosen Natural History Society, 21, 102–108. [in Japanese]

    Eades, D.C., Otte, D., Cigliano, M.M. & Braun, H. (2015) Orthoptera Species File. Version 5.0/5.0. Available from: http://Orthoptera.SpeciesFile.org (accessed 12 May 2015)

    Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39 (4), 783–791.
    http://dx.doi.org/10.2307/2408678

    Fenn, J.D., Cameron, S.L. & Whiting, M.F. (2007) The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability. Insect molecular biology, 16 (2), 239–252.
    http://dx.doi.org/10.1111/j.1365-2583.2006.00721.x

    Fenn, J.D., Song, H., Cameron, S.L. & Whiting, M.F. (2008) A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Molecular Phylogenetics and Evolution, 49 (1), 59–68.
    http://dx.doi.org/10.1016/j.ympev.2008.07.004

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299.

    Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    Ikeda, H., Cho, Y.B. & Sota, T. (2013) Colonization history of the carrion beetle Necrophila jakowlewi (Coleoptera: Silphidae) in Japan inferred from phylogeographic Analysis. Zoological Science, 30 (11), 901–905.
    http://dx.doi.org/10.2108/zsj.30.901

    Kim, I., Cha, S.Y., Yoon, M.H., Hwang, J.S., Lee, S.M., Sohn, H.D. & Jin, B.R. (2005) The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Gene, 353 (2), 155–168.
    http://dx.doi.org/10.1016/j.gene.2005.04.019

    Kim, J.I. & Kim, T.W. (2001) Taxonomic Review of Korean Tettigoniinae (Orthoptera, Tettigoniidae). Korean Journal of Entomology, 31 (2), 91–100.

    Kim, T.W. (2013) Orthoptera of Korea. Geobook, Seoul, 382 pp. [in Korean]

    Kitamura, A., Takano, O., Takata, H. & Omote, H. (2001) Late Pliocene–early Pleistocene paleoceanographic evolution of the sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 172 (1–2), 81–98.
    http://dx.doi.org/10.1016/S0031-0182(01)00272-3

    Lee, S.M. (1990) Systematic notes on Tettigoniidae of Korea. Insecta Koreana, 7, 104–117.

    Lee, Y.G., Choi, J.M. & Oertel, G.F. (2008) Postglacial sea-level change of the Korean southern sea shelf. Journal of Coastal Research, 24 (4C), 118–132.
    http://dx.doi.org/http://dx.doi.org/10.2112/06-0737.1

    Leite, L.A.R. (2012) Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. Biota Neotropica, 12 (3), 301–308.

    Liu, C., Chang, J., Ma, C., Li, L. & Zhou, S. (2013) Mitochondrial genomes of two Sinochlora species (Orthoptera): novel genome rearrangements and recognition sequence of replication origin. BMC Genomics, 14, 114.
    http://dx.doi.org/10.1186/1471-2164-14-114

    Lovette, I.J. (2005) Glacial cycles and the tempo of avian speciation. Trends in Ecology and Evolution, 20 (2), 57–59.
    http://dx.doi.org/10.1016/j.tree.2004.11.011

    Meyer, C.P. & Paulay, G. (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology, 3 (12), e422.
    http://dx.doi.org/10.1371/journal.pbio.0030422

    Mori, T. (1933) The Korean Tettigoniidae. Journal of Chosen Natural History Society, 16, 50–56. [in Japanese]

    Moulton, M.J., Song, H. & Whiting, M.F. (2010) Assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding: a case study from Orthoptera (Arthropoda: Insecta). Molecular Ecology Resources, 10 (4), 615–627.
    http://dx.doi.org/10.1111/j.1755-0998.2009.02823.x

    Mugleston, J.D., Song, H. & Whiting, M.F. (2013) A century of paraphyly: A molecular phylogeny of katydids (Orthoptera: Tettigoniidae) supports multiple origins of leaf-like wings. Molecular Phylogenetics and Evolution, 69 (3), 1120–1134.
    http://dx.doi.org/10.1016/j.ympev.2013.07.014

    Nei, M. & Kumar, S. (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York, 333 pp.

    Richly, E. & Leister, D. (2004) NUMTs in sequenced eukaryotic genomes. Molecular biology and evolution, 21, 1081–1084.
    http://dx.doi.org/10.1093/molbev/msh110

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542.
    http://dx.doi.org/10.1093/sysbio/sys029

    Saitou, N. & Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4 (4), 406–425.

    Simon, C., Buckley, T.R., Frati, F., Stewart, J.B. & Beckenbach, A.T. (2006) Incorporating Molecular Evolution into Phylogenetic Analysis, and a New Compilation of Conserved Polymerase Chain Reaction Primers for Animal Mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 37, 545–579.

    Song, H., Buhay, J.E., Whiting, M.F. & Crandall, K.A. (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. PNAS, 105 (36), 13486–13491.
    http://dx.doi.org/10.1073/pnas.0803076105

    Song, H., Moulton, M.J., Hiatt, K.D. & Whiting, M.F. (2013) Uncovering historical signature of mitochondrial DNA hidden in the nuclear genome: the biogeography of Schistocerca revisited. Cladistics, 29 (6), 643–662.
    http://dx.doi.org/10.1111/cla.12013

    Song, H., Moulton, M.J. & Whiting, M.F. (2014) Rampant nuclear insertion of mtDNA across diverse lineages within Orthoptera (Insecta). PLoS ONE, 9 (10), e110508.
    http://dx.doi.org/10.1371/journal.pone.0110508

    Storozhenko, S. (1994) Review of Orthoptera of Eastern Palearctica: Genus Tettigonia Linnaeus (Tettigoniidae, Tettigoniinae). Far Eastern Entomologist, 3, 1–20.

    Storozhenko, S.Yu. & Paik, J.C. (2007) Orthoptera of Korea. Dalnauka, Vladivostok, 231 pp.

    Swofford, D.L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30 (12), 2725–2729.
    http://dx.doi.org/10.1093/molbev/mst197

    Tang, M., Tan, M., Meng, G., Yang, S., Su, X., Liu, S., Song, W., Li, Y., Wu, Q., Zhang, A. & Zhou, X. (2014) Multiplex sequencing of pooled mitochondrial genomes—a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research, 42 (22), e166.
    http://dx.doi.org/10.1093/nar/gku917

    Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R. & Leunissen, J.A.M. (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research, 35 (Web Server issue), W71–W74.
    http://dx.doi.org/10.1093/nar/gkm306

    White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, New York, pp. 315–322.

    Yoon, S. (1997) Miocene-Pleistocene volcanism and tectonics in southern Korea and their relationship to the opening of the Japan Sea. Tectonophysics, 281 (1–2), 53–70.
    http://dx.doi.org/10.1016/S0040-1951(97)00158-3

    Zhou, Z., Huang, Y. & Shi, F. (2007) The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome, 50 (9), 855–866.

    Zhou, Z., Shi, F. & Huang, Y. (2008) The complete mitogenome of the Chinese bush cricket, Gampsocleis gratiosa (Orthoptera: Tettigonioidea). Journal of Genetics and Genomics, 35 (6), 341–348.

    Zhou, Z., Huang, Y., Shi, F. & Ye, H. (2009) The complete mitochondrial genome of Deracantha onos (Orthoptera:Bradyporidae). Molecular Biology Reports, 36 (1), 7–12.

    Zhou, Z., Ye, H., Huang, Y. & Shi, F. (2010) The phylogeny of Orthoptera inferred from mtDNA and description of Elimaea cheni (Tettigoniidae: Phaneropterinae) mitogenome. Journal of Genetics and Genomics, 37 (5), 315–324.
    http://dx.doi.org/10.1016/S1673-8527(09)60049-7

    Zhou, Z.J., Shang, N., Huang, Y., Shi, F.M. & Wei, S.Z. (2011) Sequencing and analysis of the mitochondrial genome of Conocephalus maculatus (Orthoptera: Conocephalinae). Acta Entomologica Sinica, 54 (5), 548–554.

    Zhou, Z.J., Yang, M.R., Chang, Y.L. & Shi, F.M. (2013) Comparative analysis of mitochondrial genomes of two long-legged katydids (Orthoptera: Tettigoniidae). Acta Entomologica Sinica, 56 (4), 408–418.