Skip to main content Skip to main navigation menu Skip to site footer
Type: Articles
Published: 2013-03-06
Page range: 260–272
Abstract views: 29
PDF downloaded: 15

The complete mitochondrial genome of a tessaratomid bug, Eusthenes cupreus (Hemiptera: Heteroptera: Pentatomomorpha: Tessaratomidae)

Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
Research Center of Hongta Group, Yuxi, Yunnan 653100, China
Research Center of Hongta Group, Yuxi, Yunnan 653100, China
Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
Hemiptera Mitochondrial genome Eusthenes cupreus RNA secondary structure tRNAGln-like sequence

Abstract

The 16, 299 bp long mitochondrial genome (mitogenome) of a tessaratomid bug, Eusthenes cupreus (Westwood), is reported and analyzed. The mitogenome represents the first sequenced complete mitogenome of the heteropteran family Tessaratomidae. The mitogenome of E. cuopreus is a typical circular DNA molecule with a total AT content of 74.1%, and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region. The gene arrangement is identical with the most common type in insects. Most PCGs start with the typical ATN codon, except that the initiation codon for COI is TTG. All tRNAs possess the typical clover-leaf structure, except tRNASer (AGN), in which the dihydrouridine (DHU) arm forms a simple loop. Six domains with 45 helices and three domains with 27 helices are predicted in the secondary structures of rrnL and rrnS, respectively. The control region is located between rrnS and tRNAIle, including some short microsatellite repeat sequences. In addition, three different repetitive sequences are found in the control region and the tRNAIle-tRNAGln-tRNAMet-ND2 gene cluster. One of the unusual features of this mitogenome is the presence of one tRNAGln-like sequence in the control region. This extra tRNAGln-like sequence is 73 bp long, and the anticodon arm is identical to that of the regular tRNAGln.

References

  1. Boore, J.L. & Brown, W.M. (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics and Development, 8, 668–674. http://dx.doi.org/10.1016/S0959-437X(98)80035-X

    Cameron, S.L. & Whiting, M.F. (2008) The complete mitochondrial genome of the tobacco hornworm, Manduca sexta (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene, 408, 112–123. http://dx.doi.org/10.1016/j.gene.2007.10.023

    Cantatore, P., Gadaleta, M.N., Roberti, M., Saccone, C. & Wilson, A.C. (1987) Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature, 329, 853–855. http://dx.doi.org/10.1038/329853a0

    Cassis, G. & Gordon, F.G. (2002) Zoological Catalogue of Australia: Hemiptera: Heteroptera (Pentatomomorpha). CSIRO Publishing, 741 pp. (http://en.wikipedia.org/wiki/Tessaratomidae - cite_ref-cassisgross_7-0#cite_ref-cassisgross_7-0)

    Clary, D.O. & Wolstenholme, D.R. (1987) Drosophila mitochondrial DNA: conserved sequences in the A+T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. Journal of Molecular Evolution, 25, 116–125. http://dx.doi.org/10.1007/BF02101753

    Dotson, E.M. & Beard, C.B. (2001) Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Molecular Biology, 10, 205–215. http://dx.doi.org/10.1046/j.1365-2583.2001.00258.x

    Dzerefos, C.M., Witkowski, E.T.F. & Toms, R. (2009) Life-history traits of the edible stinkbug, Encosternum delegorguei (Hem., Tessaratomidae), a traditional food in southern Africa. Journal of Applied Entomology, 133, 739–759. http://dx.doi.org/10.1111/j.1439-0418.2009.01425.x

    Gillespie, J.J., Johnston, J.S., Cannone, J.J. & Gutell, R.R. (2006) Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): Structure, organization and retrotransposable elements. Insect Molecular Biology, 15, 657–686. http://dx.doi.org/10.1111/j.1365-2583.2006.00689.x

    Gissi, C., Iannelli, F. & Pesole, G. (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101, 301–320. http://dx.doi.org/10.1038/hdy.2008.62

    Hong, M.Y., Jeong, H.C., Kim, M.J., Jeong, H.U., Lee, S.H. & Kim, I. (2009) Complete mitogenome sequence of the jewel beetle, Chrysochroa fulgidissima (Coleoptera: Buprestidae). Mitochondrial DNA, 20, 46–60.

    Hong, M.Y., Lee, E.M., Jo, Y.H., Park, H.C., Kim, S.R., Hwang, J.S., Jin, B.R., Kang, P.D., Kim, K., Han, Y.S. & Kim, I. (2008) Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene, 413, 49–57. http://dx.doi.org/10.1016/j.gene.2008.01.019

    Hwang, U.W., Friedrich, M., Tautz, D., Park, C.J., and Kim, W. (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature, 413, 154–157. http://dx.doi.org/10.1038/35093090

    Kim, M.I., Baek, J.Y., Kim, M.J., Jeong, H.C., Kim, K.G., Bae, C.H., Han, Y.S., Jin, B.R. & Kim, I. (2009) Complete nucleotide sequence and organization of the mitogenome of the red-spotted Apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Molecules and Cells, 28, 347–363. http://dx.doi.org/10.1007/s10059-009-0129-5

    Kim, M.J., Kang, A.R., Jeong, H.C., Kim, K.G. & Kim, I. (2011) Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Molecular Phylogenetics and Evolution, 61, 436–445. http://dx.doi.org/10.1016/j.ympev.2011.07.013

    Kim, M.J., Wan, X., Kim, K.G., Hwang, J.S. & Kim, I. (2010) Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae). African Journal of Biotechnology, 9, 735–754.

    Lavrov, D.V., Brown, W.M. & Boore, J.L. (2004) Phylogenetic position of the Pentastomida and (pan) crustacean relationships. Proceedings of the Royal Society Biological Sciences, 271, 537–544. http://dx.doi.org/10.1098/rspb.2003.2631

    Lin, C.P. & Danforth, B.N. (2004) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Molecular Phylogenetics and Evolution, 30, 686–702. http://dx.doi.org/10.1016/S1055-7903(03)00241-0

    Li H, Gao, J.Y., Liu, H.Y., Liu, H., Liang, A.P., Zhou, X.G. & Cai, W. (2011) The architecture and complete sequence of mitochondrial genome of an assassin bug Agriosphodrus dohrni (Hemiptera: Reduviidae). International Journal Biological Sciences, 7, 792–804. http://dx.doi.org/10.7150/ijbs.7.792

    Li, H., Liu, H., Shi, A.M., Štys, P., Zhou, X.G. & Cai, W. (2012a) The complete mitochondrial genome and novel gene arrangement of the unique-headed bug Stenopirates sp. (Hemiptera: Enicocephalidae). PLoS ONE, 7, e29419. http://dx.doi.org/10.1371/journal.pone.0029419

    Li, H., Liu, H.Y., Cao, L.M., Shi, A.M, Yang, H.L. & Cai, W. (2012b) The complete mitochondrial genome of the damsel bug Alloeorhynchus bakeri (Hemiptera: Nabidae). International Journal of Biological Sciences, 8, 93–107. http://dx.doi.org/10.7150/ijbs.8.93

    Li, X., Ogoh, K., Ohba, N., Liang, X. & Ohmiya, Y. (2007) Mitochondrial genomes of two luminous beetles, Rhagophthalmus lufengensis and R. ohbai (Arthropoda, Insecta, Coleoptera). Gene, 392, 196–205. http://dx.doi.org/10.1016/j.gene.2006.12.017

    Nardi, F., Spinsanti, G., Boore, J.L., Carapelli, A., Dallai, R. & Frati, F. (2003) Hexapod origins: monophyletic or paraphyletic? Science, 299, 1887–1889. http://dx.doi.org/10.1126/science.1078607

    Perna, N.T. & Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41, 353–358. http://dx.doi.org/10.1007/BF01215182

    Rider, D.A. (2006) Family Tessaratomidae. In: Aukema B. & Rieger C. (Eds.) Catalogue of the Heteroptera of the Palaearctic Region. Vol. 5, Netherlands Entomological Society, Amsterdam, pp. 182–189.

    Rolston, L.H., Aalbu, R. L., Murphy, M. J. & Rider, D. A. (1993) A catalog of the Tessaratomidae of the world. Papua New Guinea Journal of Agriculture, Forestry and Fisheries, 36, 36–108.

    Schultheis, A.S., Weigt, L.A., & Hendricks, A.C. (2002) Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera: utility of tandem repeat-containing regions in studies of population genetics and evolutionary history. Insect Molecular Biology, 11, 605–610. http://dx.doi.org/10.1046/j.1365-2583.2002.00371.x

    Shao, R., Campbell, N.J.H., & Barker, S.C. (2001) Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Molecular Biology and Evolution, 18, 858–865. http://dx.doi.org/10.1093/oxfordjournals.molbev.a003867

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. http://dx.doi.org/10.1093/molbev/msr121

    Wolstenholme, D.R. (1992) Genetic novelties in mitochondrial genomes of multicellular animals. Current Opinion Genetics and Development, 2, 918–925. http://dx.doi.org/10.1016/S0959-437X(05)80116-9

    Zhang, C.Y. & Huang, Y. (2008) Complete mitochondrial genome of Oxya chinensis (Orthoptera, Acridoidea). Acta Biochimica et Biophys Sinica, 40, 7–18. http://dx.doi.org/10.1111/j.1745-7270.2008.00375.x

    Zhang, D.X. & Hewitt, F.M. (1997) Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematic and Ecology, 25, 99–120. http://dx.doi.org/10.1016/S0305-1978(96)00042-7

    Zhang, D.X., Szymura, J.M. & Hewitt, G.M. (1995) Evolution and structural conservation of the control region of insect mitochondrial DNA. Journal of Molecular Evolution, 40, 382–391. http://dx.doi.org/10.1007/BF00164024

    Zhou, Z., Huang, Y. & Shi, F. (2007) The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T–rich region of 70 bp in length. Genome, 50, 855–866. http://dx.doi.org/10.1139/G07-057

    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415. http://dx.doi.org/10.1093/nar/gkg595