Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-07-26
Page range: 4–36
Abstract views: 1050
PDF downloaded: 5

Life history traits of spider mites and their relationship: A test of trade-off theory

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People’s Republic of China
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People’s Republic of China
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People’s Republic of China
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People’s Republic of China
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People’s Republic of China
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People’s Republic of China
Arachnida spider mite trade-off growth longevity fecundity

Abstract

Trade-off theory has long been the central to evolutionary biology and is extensively employed to explain the correlations between life-history traits. It is generally accepted that trade-off occurs when one trait cannot increase without a decrease in another. In this study, we collected data on spider mites (70 papers for females and 35 papers for males) and explored the relationships between life-history traits to test the trade-off theory in both sexes. The results demonstrate that for both males and females, there was a statistically significant negative correlation between developmental rate and lifespan, in agreement with the trade-off theory. However, in contradiction with our assumption, the developmental rate of females was positively correlated with maximum daily fecundity, but not with the total fecundity. This indicates that developing fast does not necessarily bring the cost to late life-history traits. The long-lived females also showed higher lifetime fecundity, contrary to our prediction that investment in survival comes at the cost of lower investment in reproduction. These fundings are congruent with life history theory in that spider mites “live fast, die young”, convincing the trade-off between growth and longevity. Nevertheless, this study highlights that there is no clear evidence that spider mites trade off growth and survival for reproduction. The implications of this phenomenon are discussed.

References

  1. Abou-Elella, G.M. & Abdel-Khalek, A.A. (2020) Biology and life table analysis of Tetranychus urticae (Acari: Tetranychidae) on different common pea and bean cultivars. Persian Journal of Acarology, 9 (2), 181–192.

  2. Al Khoury, C., Guillot, J. & Nemer, N. (2020) Susceptibility and development of resistance of the mite Tetranychus urticae to aerial conidia and blastospores of the entomopathogenic fungus Beauveria bassianaSystematic and Applied Acarology, 25 (3), 429–443.

  3.         https://doi.org/10.11158/saa.25.3.5

  4. Atakan, E., Saridaş, M.A., Pehlivan, S., Achiri, T.D., Çeliktopuz, E. & Kapur, B. (2021) Influence of irrigation regimes on yield, pomological parameters and population development of Tetranychus cinnabarinus Boisd. (Acari: Tetranychidae) in strawberry. Systematic and Applied Acarology, 26 (7), 1241–1253.

  5.         https://doi.org/10.11158/saa.26.7.5

  6. Amala, U., Chinniah, C., Sawant, I.S., Yadav, D.S. & Phad, D.M. (2016) Comparative biology and fertility parameters of two-spotted spider mite, Tetranychus urticae Koch. on different grapevine varieties. Vitis, 55 (1), 31–36.

  7. Aswin, T. (2015) Biology and management of rice leaf mite, Oligonychus oryzae (Hirst) (Acari: Tetranychidae). Master’s thesis, Kerala Agricultural University, 91 pp.

  8. Aunan, J.R., Watson, M.M., Hagland, H.R. & Søreide, K. (2016) Molecular and biological hallmarks of ageing. Journal of British Surgery, 103 (2), e29–e46.

  9.         https://doi.org/10.1002/bjs.10053

  10. Azadi Dana, E., Sadeghi, A., Güncan, A., Khanjani, M., Babolhavaeji, H. & Maroufpoor, M. (2018) Demographic comparison of the Tetranychus urticae Koch. (Acari: Tetranychidae) reared on different cultivars of strawberry. Journal of Economic Entomology, 111 (6), 2927–2935.

  11.         https://doi.org/10.1093/jee/toy242

  12. Bayu, M.S.Y.I., Ullah, M.S., Takano, Y. & Gotoh, T. (2017) Impact of constant versus fluctuating temperatures on the development and life history parameters of Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 72 (3), 205–227.

  13.         https://doi.org/10.1007/s10493-017-0151-9

  14. Bazazzadeh, F., Shishehbor, P., Esfandiari, M. & Farahi, S. (2020) Development, reproduction and life table parameters of Tetranychus turkestani (Acari: Tetranychidae) on three different host plants. Acarologia, 60 (3), 643–655.

  15.         https://doi.org/10.24349/acarologia/20204393

  16. Boggs, C.L. (2009) Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology, 23 (1), 27–37.

  17.         https://doi.org/10.1111/j.1365-2435.2009.01527.x

  18. Bozhgani, N.S.S., Kheradmand, K. & Talebi, A.A. (2019) The effects of Spiromesifen on life history traits and demographic parameters of predatory mite Neoseiulus californicus (Acari: Phytoseiidae) and its prey Tetranychus urticae Koch (Acari: Tetranychidae). Systematic and Applied Acarology, 24 (8), 1512–1525.

  19.         https://doi.org/10.11158/saa.24.8.11

  20. Brienen, R.J., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M., Ceccantini, G., Di Filippo, A. Helama, S., Locosselli, G.M., Locosselli, Lopez, L., Piovesan, G., Schöngart, J., Villalba R. & Gloor, E. (2020) Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nature Communications, 11 (1), 1–10.

  21.         https://doi.org/10.1038/s41467-020-17966-z

  22. Braendle, C., Heyland, A. & Flatt, T. (2011) Integrating mechanistic and evolutionary analysis of life history variation. Mechanisms of life history evolution. In: Flatt, T. & Heyland, A. (Eds.), The Genetics and Physiology of Life History Traits and Trade-offs, Oxford University Press, Cambridge, pp. 3–10.

  23.         https://doi.org/10.1093/acprof:oso/9780199568765.003.0001

  24. Chaaban, S.B., Chermiti, B. & Kreiter, S. (2011) Comparative demography of the spider mite, Oligonychus afrasiaticus, on four date palm varieties in southwestern Tunisia. Journal of Insect Science, 11 (1), 136–136.

  25.         https://doi.org/10.1673/031.011.13601

  26. Chaaban, S.B., Chermiti, B. & Kreiter, S. (2012) Effects of host plants on distribution, abundance, developmental time and life table parameters of Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae). Papéis Avulsos de Zoologia, 52 (10), 121–133.

  27.         https://doi.org/10.1590/S0031-10492012001000001

  28. Chen, C., Yang, H., Xue, F. & Xia, Q. (2019) Geographical variation in life-history traits suggests an environmental-dependent trade-off between juvenile growth rate and adult lifespan in a moth. Bulletin of Entomological Research, 109 (5), 626–632.

  29.         https://doi.org/10.1017/S0007485318001001

  30. Chen, W.H., Li, C.Y. & Chang, T.Y. (2016) Temperature-dependent development and life history of Oligonychus litchii (Acari: Tetranychidae), on wax apple. Journal of Asia-Pacific Entomology, 19 (1), 173–179.

  31.         https://doi.org/10.1016/j.aspen.2016.01.004

  32. Clutton-Brock, T.H., Guinness, F.E. & Albon, S.D. (1982) Red deer: behavior and ecology of two sexes. University of Chicago Press, Chicago, 400 pp.

  33. Cohen, A.A., Coste, C.F., Li, X.Y., Bourg, S. & Pavard, S. (2020) Are trade-offs really the key drivers of ageing and life span? Functional Ecology, 34 (1), 153–166.

  34.         https://doi.org/10.1111/1365-2435.13444

  35. Dar, M.Y., Rao, R.J. & Ramegowda, G.K. (2016) Age-stage, two-sex life table of European red spider mite, Panonychus ulmi (Koch) (Prostigmata: Tetranychidae) on mulberry varieties. Archives of Phytopathology and Plant Protection, 49 (7–8), 182–194.

  36.         https://doi.org/10.1080/03235408.2016.1180049

  37. De Lima, R.P., Bezerra, M.M., deMoraes, G.J. & Furtado, I. (2017) Life table of the red spider mite Tetranychus bastosi (Acari: Tetranychidae) on different host plants. Acarologia, 57 (3), 601–605.

  38.         https://doi.org/10.24349/acarologia/20174177

  39. Dos Santos, M.F., Silva, P.R.R., Briozo, M.E.O., Silva, J.F., Junior, L.C.D.M., Barbosa, D.R.E.S. & De França, S.M. (2021) Lethal and sublethal effects of Azadirachta indica-based products on Tetranychus neocaledonicus (Acari: Tetranychidae). Systematic and Applied Acarology, 26 (8), 1560–1574.

  40.         https://doi.org/10.11158/saa.26.8.12

  41. Economos, A.C. & Lints, F.A. (1986). Developmental temperature and life span in Drosophila melanogasterGerontology, 32 (1), 18–27.

  42.         https://doi.org/10.1159/000212761

  43. El Taj, H.F., Hossain, K.F., Arifunnahar, M., Alim, M.A. & Bachchu, M.A.A. (2016) Effects of host plants and seasons on the biology of the two-spotted spider mite, Tetranychus urticae (Koch). African Entomology, 24 (1), 188–196.

  44.         https://doi.org/10.4001/003.024.0188

  45. Fedarko, N.S. (2011) The biology of aging and frailty. Clinics in Geriatric Medicine, 27 (1), 27–37.

  46.         https://doi.org/10.1016/j.cger.2010.08.006

  47. Ferraz, J.C.B., Neto, A.V.G., DeFrança, S.M., Silva, P.R.R., Melo, J.W.D.S. & De Lima, D.B. (2021) Temperature-dependent development and reproduction of Oligonychus punicae (Acari: Tetranychidae) on Eucalyptus. Systematic and Applied Acarology, 26 (5), 918–927.

  48.         https://doi.org/10.11158/saa.26.5.7

  49. Ferraz, J.C.B., Silva, P.R.R., Amaranes, M.P., da Silva Melo, J.W., de Lima, D.B. & de França, S.M. (2020) Biology and fertility life table of Oligonychus punicae Hirst (Acari: Tetranychidae) associated with eucalyptus in a clonal minigarden. Systematic and Applied Acarology, 25 (1), 103–112.

  50.         https://doi.org/10.11158/saa.25.1.8

  51. Garland Jr, T., Downs, C.J. & Ives, A.R. (2022) Trade-offs (and Constraints) in organismal biology. Physiological and Biochemical Zoology, 95 (1), 82–112.

  52.         https://doi.org/10.1086/717897

  53. Garland, T. (2014). Trade-offs. Current Biology, 24 (2), R60–R61.

  54.         https://doi.org/10.1016/j.cub.2013.11.036

  55. Garratt, M., Try, H., Smiley, K.O., Grattan, D.R. & Brooks, R.C. (2020) Mating in the absence of fertilization promotes a growth-reproduction versus lifespan trade-off in female mice. Proceedings of the National Academy of Sciences, 117 (27), 15748–15754.

  56.         https://doi.org/10.1073/pnas.2003159117

  57. Golan, K., Jurado, I.G., Kot, I., Górska-Drabik, E., Kmieć, K., Łagowska, B., Skwaryło-Bednarz, B., Kopacki, M. & Jamiołkowska, A. (2021) Defense responses in the interactions between medicinal plants from Lamiaceae Family and the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Agronomy, 11 (3), 438.

  58.         https://doi.org/10.3390/agronomy11030438

  59. Gomes Neto, A.V., Silva, P.R.R., Melo, J.W., MeloJúnior, L.C.D. & França, S.M.D. (2017) Biology and life table of Tetranychus neocaledonicus on lima bean. International journal of acarology, 43 (8), 622–626.

  60.         https://doi.org/10.1080/01647954.2017.1377288

  61. Gotoh, T. & Kameyama, Y. (2014) Low temperature induces embryonic diapause in the spider mite, Eotetranychus smithi. Journal of Insect Science, 14 (1), 68.

  62.         https://doi.org/10.1093/jis/14.1.68

  63. Gotoh, T., Moriya, D. & Nachman, G. (2015) Development and reproduction of five Tetranychus species (Acari: Tetranychidae): Do they all have the potential to become major pests? Experimental and Applied Acarology, 66 (4), 453–479.

  64.         https://doi.org/10.1007/s10493-015-9919-y

  65. Guo, Y.L., Jiao, X.D., Xu, J.J., Yang, S., Duan, X.K. & Zhang, J.P. (2013) Growth and reproduction of Tetranychus turkestani and Tetranychus truncatus (Acari: Tetranychidae) on cotton and corn. Systematic and Applied Acarology, 18 (1), 89–98.

  66.         https://doi.org/10.11158/saa.18.1.10

  67. Hasanvand, I., Jafari, S. & Khanjani, M (2019) Life table parameters of Iranian population, Tetranychus kanzawai (Acari: Tetranychidae) fed on soybean leaves. Systematic and Applied Acarology, 24 (2), 231–250.

  68.         https://doi.org/10.11158/saa.24.2.6

  69. Hasanvand, I., Jafari, S. & Khanjani, M. (2020) Effect of temperature on development and reproduction of Tetranychus kanzawai (Tetranychidae) fed on apple leaves. International Journal of Acarology, 46 (1), 31–40.

  70.         https://doi.org/10.1080/01647954.2019.1694582

  71. Houle, D. (1991) Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution, 45 (3), 630–648.

  72.         https://doi.org/10.1111/j.1558-5646.1991.tb04334.x

  73. Hughes, K.A. & Reynolds, R.M. (2005) Evolutionary and mechanistic theories of aging. Annual Review of Entomology, 50 (1), 421–445.

  74.         https://doi.org/10.1146/annurev.ento.50.071803.130409

  75. Husak, J.F. & Lailvaux, S.P. (2022) Conserved and convergent mechanisms underlying performance–life-history trade-offs. Journal of Experimental Biology, 225 (Suppl_1), jeb243351.

  76.         https://doi.org/10.1242/jeb.243351

  77. Islam, M.T., Jahan, M., Gotoh, T. & Ullah, M.S. (2017) Host-dependent life history and life table parameters of Tetranychus truncatus (Acari: Tetranychidae). Systematic and Applied Acarology, 22 (12), 2068–2082.

  78.         https://doi.org/10.11158/saa.22.12.4

  79. Ito, K. (2011) Overwintering survival and postdiapause fecundity in a population of the Kanzawa spider mite Tetranychus kanzawai (Acari: Tetranychidae) on Orixa japonica (Rutaceae). Experimental and Applied Acarology, 53 (1), 51–56.

  80.         https://doi.org/10.1007/s10493-010-9383-7

  81. Jafarian, F. & Jafari, S. (2016a) The effect of temperature on life history and demographic parameters of Eotetranychus frosti (Acari: Tetranychidae). Systematic and Applied Acarology, 21 (7), 957–966.

  82.         https://doi.org/10.11158/saa.21.7.9

  83. Jafarian, F. & Jafari, S. (2016b) Temperature-dependent life history of Eotetranychus frosti (Tetranychidae) fed on apple leaves. International Journal of Acarology, 42 (8), 377–381.

  84.         https://doi.org/10.1080/01647954.2016.1202319

  85. Jafarian, F., Jafari, S. & Fathipour, Y. (2020) Evaluation of antibiosis resistance in seven apple cultivars to Eotetranychus frosti (Tetranychidae). Systematic and Applied Acarology, 25 (3), 525–537.

  86.         https://doi.org/10.11158/saa.25.3.12

  87. Johann, L., do Nascimento, J.M., da Silva, G.L., Silva Carvalho, G. & Juarez Ferla, N. (2019) Life history and life table parameters of Panonychus ulmi (Acari: Tetranychidae) on two European grape cultivars. Phytoparasitica, 47 (1), 79–86.

  88.         https://doi.org/10.1007/s12600-018-00709-8

  89. Jones, O.R., Scheuerlein, A., Salguero-Gómez, R., Camarda, C.G., Schaible, R., Casper, B.B., Dahlgren, J.P., Ehrlén, J., García, M.B., Menges, E.S., Quintana-Ascencio, P.F., Caswell, H., Baudisch, A. & Vaupel, J.W. (2014) Diversity of ageing across the tree of life. Nature, 505 (7482), 169–173.

  90.         https://doi.org/10.1038/nature12789

  91. Kabiri, H., Saboori, A. & Allahyari, H. (2012) Impact of different cotton (Gossypium spp.) cultivars, as host plant, on development and fertility life-table parameters of Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology, 38 (1), 46–50.

  92.         https://doi.org/10.1080/01647954.2011.577450

  93. Karami-Jamour, T. & Shishehbor, P. (2012) Development and life table parameters of Tetranychus turkestani (Acarina: Tetranychidae) at different constant temperatures. Acarologia, 52 (2), 113–122.

  94.         https://doi.org/10.1051/acarologia/20122037

  95. Kasap, Ý. & Atlihan, R. (2021) Population growth performance of Panonychus ulmi Koch (Acarina: Tetranychidae) on different fruit trees. Systematic and Applied Acarology, 26 (7), 1185–1197.

  96.         https://doi.org/10.11158/saa.26.7.1

  97. Keskin, N. & Kumral, N.A. (2015) Screening tomato varietal resistance against the two-spotted spider mite [Tetranychus urticae (Koch)]. International Journal of Acarology, 41 (4), 300–309.

  98.         https://doi.org/10.1080/01647954.2015.1028440

  99. Khanamani, M., Fathipour, Y. & Hajiqanbar, H. (2013) Population growth response of Tetranychus urticae to eggplant quality: application of female age-specific and age-stage, two-sex life tables. International Journal of Acarology, 39 (8), 638–648.

  100.         https://doi.org/10.1080/01647954.2013.861867

  101. Khodayari, S. & Shalilvand, M.H. (2021) Biological responses of Tetranychus urticae to five pepper cultivars at two phenological stages of host plants. Systematic and Applied Acarology, 26 (10), 1927–1939.

  102.         https://doi.org/10.11158/saa.26.10.7

  103. Khodayari, S., Nematollahi, N., Abedini, F. & Rasouli, F. (2021) The response of common bean (Phaseolus vulgaris L.) to salinity and drought stresses and life table parameters of Tetranychus urticae Koch reared on it. Systematic and Applied Acarology, 26 (1), 62–74.

  104.         https://doi.org/10.11158/saa.26.1.4

  105. Kirkwood, T.B. & Holliday, R. (1979) The evolution of ageing and longevity. Proceedings of the Royal Society of London. Series B. Biological Sciences, 205 (1161), 531–546.

  106.         https://doi.org/10.1098/rspb.1979.0083

  107. Knops, J.M., Koenig, W.D. & Carmen, W.J. (2007) Negative correlation does not imply a trade-off between growth and reproduction in California oaks. Proceedings of the National Academy of Sciences, 104 (43), 16982–16985.

  108.         https://doi.org/10.1073/pnas.0704251104

  109. Kokko, H. (1998) Good genes, old age and life-history trade-offs. Evolutionary Ecology, 12 (6), 739–750.

  110.         https://doi.org/10.1023/A:1006541701002

  111. Kumral, N., Göksel, P.H., Aysan, E. & Kolcu, A. (2017) Biological parameters and population development of Tetranychus urticae Koch, 1836 (Acari: Tetranychidae) on different pepper cultivars. Turkish Journal of Entomology, 41 (3), 263–273.

  112.         https://doi.org/10.16970/entoted.297132

  113. Kumral, N.A., Göksel, P.H., Aysan, E. & Kolcu, A. (2018) Life table of Tetranychus urticae (Koch) (Acari: Tetranycidae) on different Turkish eggplant cultivars under controlled conditions. Acarologia, 59 (1), 12–20.

  114.         https://doi.org/10.24349/acarologia/20194307

  115. Landes, J., Henry, P.Y., Hardy, I., Perret, M. & Pavard, S. (2019) Female reproduction bears no survival cost in captivity for gray mouse lemurs. Ecology and Evolution, 9 (11), 6189–6198.

  116.         https://doi.org/10.1002/ece3.5124

  117. Lenth, R.V., Lenth, M.R. & Matrix, I. (2015) Package ‘lsmeans’. R package version2.

  118. Li, G.Y. & Zhang, Z.Q. (2019) The sex-and duration-dependent effects of intermittent fasting on lifespan and reproduction of spider mite Tetranychus urticaeFrontiers in Zoology, 16 (1), 1–10.

  119.         https://doi.org/10.1186/s12983-019-0310-4

  120. Li, G.Y. & Zhang, Z.Q. (2021a) Sex dimorphism of life-history traits and their response to environmental factors in spider mites. Experimental and Applied Acarology, 84 (3), 497–527.

  121.         https://doi.org/10.1007/s10493-021-00632-4

  122. Li, G.Y. & Zhang, Z.Q. (2021b) Sex-specific response to delayed and repeated mating in spider mite Tetranychus urticae. Bulletin of Entomological Research, 111 (1), 49–56.

  123.         https://doi.org/10.1017/S0007485320000292

  124. Li, G.Y. & Zhang, Z.Q. (2022) Age‐specific mortality and fecundity of a spider mite under diet restriction and delayed mating. Insect Science, 29 (3), 889–899.

  125.         https://doi.org/10.1111/1744-7917.12948

  126. Lin, M.Y. (2013) Temperature-dependent life history of Oligonychus mangiferus (Acari: Tetranychidae) on Mangifera indica. Experimental and Applied Acarology, 61 (4), 403–413.

  127.         https://doi.org/10.1007/s10493-013-9716-4

  128. Lin, M.Y., Lin, C.H., Lin, Y.P. & Tseng, C.T. (2020) Temperature-dependent life history of Eutetranychus africanus (Acari: Tetranychidae) on papaya. Systematic and Applied Acarology, 25 (3), 479–490.

  129.         https://doi.org/10.11158/saa.25.3.8

  130. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. & Kroemer, G. (2013) The hallmarks of aging. Cell, 153 (6), 1194–1217.

  131.         https://doi.org/10.1016/j.cell.2013.05.039

  132. Maleknia, B., Fathipour, Y. & Soufbaf, M. (2016) How greenhouse cucumber cultivars affect population growth and two-sex life table parameters of Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology, 42 (2), 70–78.

  133.         https://doi.org/10.1080/01647954.2015.1118157

  134. Medawar, P.B. (1952) An Unsolved Problem of Biology. H.K. Lewis, London, 24 pp.

  135. Metcalfe, N.B. & Monaghan, P. (2003) Growth versus lifespan: perspectives from evolutionary ecology. Experimental Gerontology, 38 (9), 935–940.

  136.         https://doi.org/10.1016/S0531-5565(03)00159-1

  137. Mitra, S., Acharya, S. & Ghosh, S. (2021) Implication of five host plants on the life history trait of Tetranychus urticae (Acari: Tetranychidae). Biologia, 76 (2), 517–524.

  138.         https://doi.org/10.2478/s11756-020-00547-2

  139. Motahari, M., Kheradmand, K., Roustaee, A.M. & Talebi, A.A. (2014) The impact of cucumber nitrogen nutrition on life history traits of Tetranychus urticae (Koch) (Acari: Tetranychidae). Acarologia, 54 (4), 443–452.

  140.         https://doi.org/10.1051/acarologia/20142137

  141. Najafabadi, S.M., Shoushtari, R.V., Zamani, A.A., Arbabi, M. & Farazmand, H. (2014) Life parameters of Tetranychus urticae (Acari: Tetranychidae) on six common bean cultivars. Journal of Economic Entomology, 107 (2), 614–622.

  142.         https://doi.org/10.1603/EC11205

  143. Nere, D.R., Melo, J.W.D.S., de Lima, D.B. & Bleicher, E. (2021) Identification of Tetranychus neocaledonicus (Acari: Tetranychidae)-resistant genotypes in Phaseolus lunatus. Systematic and Applied Acarology, 26 (12), 2417–2425.

  144.         https://doi.org/10.11158/saa.26.12.16

  145. Noronha, A.C.S., Ferreira, C.T., Tavares, E.J.M. & Lima, D.B. (2018) Fertility life table of Tetranychus palmarum Flechtmann & Noronha (Acari: Tetranychidae) in oil palm. Neotropical Entomology, 47 (5), 591–597.

  146.         https://doi.org/10.1007/s13744-017-0550-y

  147. Partridge, L. & Barton, N.H. (1993) Evolution of aging: Testing the theory using Dorsophila. Genetica, 91 (1), 89–98.

  148.         https://doi.org/10.1007/BF01435990

  149. Piper, M., Zanco, B., Sgrò, C., Adler, M., Mirth, C. & Bonduriansky, R. (2022) Dietary restriction and lifespan: adaptive reallocation or somatic sacrifice? Preprints, 2022, 2022020033.

  150.         https://doi.org/10.20944/preprints202202.0033.v1

  151. Promislow, D.E., Flatt, T. & Bonduriansky, R. (2022) The biology of aging in insects: from Drosophila to other insects and back. Annual Review of Entomology, 67, 83–103.

  152.         https://doi.org/10.1146/annurev-ento-061621-064341

  153. Qiu, Y., Yang, R., Lu, M.-X., Gong, W.-R., Hu, J. & Du, Y.-Z. (2021) Effects of melon cultivars on the growth, development and reproduction of Tetranychus truncatus Ehara (Acarina: Tetranychidae). Chinese Journal of Applied Entomology, 58 (2), 390−397.

  154. R Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna, Austria. Retrieved from https://www.R-project.org/

  155. Rajaee, F., Maroofpour, N., Ghane-Jahromi, M., Sedaratian-Jahromi, A. & Guedes, R.N.C. (2022) Transgenerational sublethal effects of spiromesifen on Tetranychus urticae (Acari: Tetranychidae) and on its phytoseiid predator Neoseiulus californicus (Acari: Phytoseiidae). Systematic and Applied Acarology, 27 (5), 888–904.

  156.         https://doi.org/10.11158/saa.27.5.5

  157. Reznick, D. (1985) Costs of reproduction: an evaluation of the empirical evidence. Oikos, 44 (2), 257–267.

  158.         https://doi.org/10.2307/3544698

  159. Reznick, D., Nunney, L. & Tessier, A. (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology & Evolution, 15 (10), 421–425.

  160.         https://doi.org/10.1016/S0169-5347(00)01941-8

  161. Riahi, E., Shishehbor, P., Nemati, A.R. & Saeidi, Z. (2013) Temperature effects on development and life table parameters of Tetranychus urticae (Acari: Tetranychidae). Journal of Agricultural Science and Technology, 15, 661–672.

  162. Ricklefs, R.E. & Cadena, C.D. (2007) Lifespan is unrelated to investment in reproduction in populations of mammals and birds in captivity. Ecology Letters, 10 (10), 867–872.

  163.         https://doi.org/10.1111/j.1461-0248.2007.01085.x

  164. Ridgway, I.D. & Richardson, C.A. (2011) Arctica islandica: the longest lived non colonial animal known to science. Reviews in Fish Biology and Fisheries, 21 (3), 297–310.

  165.         https://doi.org/10.1007/s11160-010-9171-9

  166. Rimy, S.J., Das, G., Gotoh, T. & Ullah, M.S. (2021) Lethal and sublethal effects of bifenazate on the biological parameters of Tetranychus truncatus Ehara (Acari: Tetranychidae). Systematic and Applied Acarology, 26 (11), 2118–2132.

  167.         https://doi.org/10.11158/saa.26.11.12

  168. Roff, D.A. (Ed.) (1993) Evolution of life histories: theory and analysis. Springer Science & Business Media.

  169. Roff, D.A. (2002) Life history evolution (Vol. 7). Sinauer Associates, Sunderland, MA, vii + 527 pp.

  170. Rohatgi (2021) Web plot digitizer. [http://arohatgi.info/WebPlotDigitizer/] (2010–2013)

  171. Roknuzzaman, A.H.M., Basak, R., Rimy, S.J., Sharmin, D., Ahmad, M. & Ullah, M.S. (2021) Host dependent demographic parameters of spider mite Oligonychus biharensis (Hirst) on two bean species. International Journal of Tropical Insect Science, 41 (1), 801–808.

  172.         https://doi.org/10.1007/s42690-020-00270-0

  173. Rollo, C.D. (2002) Growth negatively impacts the life span of mammals. Evolution & Development, 4 (1), 55–61.

  174.         https://doi.org/10.1046/j.1525-142x.2002.01053.x

  175. Rose, M.R. (1994) Evolutionary biology of aging. Oxford University Press on Demand.

  176. Rose, M.R., Nusbaum, T.J. & Chippindale, A.K. (1996) Laboratory evolution: the experimental wonderland and the Cheshire cat syndrome. In: Rose, M.R. & Lauder, G.V. (Eds.), Adaptation. Academic Press, San Diego, CA, pp. 221–241.

  177. Sabelis, M.W. (1991) Life-history evolution of spider mites. In: Schuster, R. & Murphy, P.W. (Eds.), The Acari. Springer, Dordrecht. pp. 23–49.

  178.         https://doi.org/10.1007/978-94-011-3102-5_2

  179. Saeidi, Z. & Nemati, A. (2020) Almond spider mite, Schizotetranychus smirnovi (Acari: Tetranychidae): population parameters in laboratory and field conditions. Persian Journal of Acarology, 9 (3), 279–289.

  180. Saeidi, Z., Nemati, A. & Riahi, E. (2020) Temperature-dependent development and life table parameters of Schizotetranychus smirnovi (Acari: Tetranychidae) on Almond. Systematic and Applied Acarology, 25 (8), 1373–1383.

  181.         https://doi.org/10.11158/saa.25.8.2

  182. Saeidi, Z., Nemati, A. & Riahi, E. (2021) Effects of different almond cultivars on biological and population responses of Schizotetranychus smirnovi (Acari: Tetranychidae). Systematic and Applied Acarology, 26 (5), 962–972.

  183.         https://doi.org/10.11158/saa.26.5.11

  184. Savi, P.J., deMoraes, G.J., Melville, C.C. & Andrade, D.J. (2019) Population performance of Tetranychus evansi (Acari: Tetranychidae) on African tomato varieties and wild tomato genotypes. Experimental and Applied Acarology, 77 (4), 555–570.

  185.         https://doi.org/10.1007/s10493-019-00364-6

  186. Savi, P.J., Gonsaga, R.F., de Matos, S.T.S., Braz, L.T., de Moraes, G.J. & de Andrade, D.J. (2021) Performance of Tetranychus urticae (Acari: Tetranychidae) on three hop cultivars (Humulus lupulus). Experimental and Applied Acarology, 84 (4), 733–753.

  187.         https://doi.org/10.1007/s10493-021-00643-1

  188. Séguret, A., Bernadou, A. & Paxton, R.J. (2016) Facultative social insects can provide insights into the reversal of the longevity/fecundity trade-off across the eusocial insects. Current Opinion in Insect Science, 16, 95–103.

  189.         https://doi.org/10.1016/j.cois.2016.06.001

  190. Siddhapara, M. & Virani, V. (2018) Biology of two spotted red spider mite Tetranychus urticae koch (Acari: Tetranychidae) on Okra. Indian Journal of Entomology, 80, 90–94.

  191.         https://doi.org/10.5958/0974-8172.2018.00018.4

  192. Smith, H.A. & Snell, T.W. (2014) Differential evolution of lifespan and fecundity between asexual and sexual females in a benign environment. International Review of Hydrobiology, 99 (1–2), 117–124.

  193.         https://doi.org/10.1002/iroh.201301711

  194. Stearns, S.C. (1989) Trade-offs in life-history evolution. Functional Ecology, 3 (3), 259–268.

  195.         https://doi.org/10.2307/2389364

  196. Stearns, S.C. (1992) The evolution of life histories. Oxford: Oxford university press, 264 pp.

  197. Sulek, N. & Cakmak, I. (2022) Performance of Tetranychus urticae (Acari: Tetranychidae) on six cotton varieties with varying degree of leaf pubescence. Systematic and Applied Acarology, 27 (3), 450–459.

  198.         https://doi.org/10.11158/saa.27.3.4

  199. Susurluk, H. & Gürkan, M.O. (2022) The effects of lambda-cyhalothrin and bifenthrin resistance on the fitness of Tetranychus urticae Koch (Acari: Tetranychidae). Systematic and Applied Acarology, 27 (3), 525–537.

  200.         https://doi.org/10.11158/saa.27.3.10

  201. Tarín, J.J., Gómez-Piquer, V., García-Palomares, S., García-Pérez, M.A. & Cano, A. (2014) Absence of long-term effects of reproduction on longevity in the mouse model. Reproductive Biology and Endocrinology, 12 (1), 1–6.

  202.         https://doi.org/10.1186/1477-7827-12-84

  203. Tarín, J.J., Gómez-Piquer, V., García-Palomares, S., García-Pérez, M.A. & Cano, A. (2014) Absence of long-term effects of reproduction on longevity in the mouse model. Reproductive Biology and Endocrinology, 12 (1), 1–6.

  204.         https://doi.org/10.1186/1477-7827-12-84

  205. Tavecchia, G., Coulson, T., Morgan, B.J., Pemberton, J.M., Pilkington, J.C., Gulland, F.M.D. & Clutton-Brock, T.H. (2005) Predictors of reproductive cost in female Soay sheep. Journal of Animal Ecology, 74 (2), 201–213.

  206.         https://doi.org/10.1111/j.1365-2656.2005.00916.x

  207. Tuan, S.J., Lin, Y.H., Yang, C.M., Atlihan, R., Saska, P. & Chi, H. (2016) Survival and reproductive strategies in two-spotted spider mites: demographic analysis of arrhenotokous parthenogenesis of Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 109 (2), 502–509.

  208.         https://doi.org/10.1093/jee/tov386

  209. Uddin, M.N., Alam, M.Z., Miah, M.R.U., Mian, M.I.H. & Mustarin, K.E. (2015) Life table parameters of Tetranychus urticae Koch (Acari: Tetranychidae) on different bean varieties. African Entomology, 23 (2), 418–426.

  210.         https://doi.org/10.4001/003.023.0231

  211. Ullah, M.S., Gotoh, T. & Lim, U.T. (2014) Life history parameters of three phytophagous spider mites, Tetranychus piercei, T. truncatus and T. bambusae (Acari: Tetranychidae). Journal of Asia-Pacific Entomology, 17 (4), 767–773.

  212.         https://doi.org/10.1016/j.aspen.2014.07.008

  213. Van Noordwijk, A.J. & de Jong, G. (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. The American Naturalist, 128 (1), 137–142.

  214.         https://doi.org/10.1086/284547

  215. Weeks, S.C. (2020) Effects of dietary restriction on lifespan, growth, and reproduction of the clam shrimp Eulimnadia texanaHydrobiologia, 847 (14), 3067–3076.

  216.         https://doi.org/10.1007/s10750-020-04313-y

  217. Williams, G.C. (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398–411.

  218. Xu, D., Wang, K., Zhang, Y., Wang, H., Wu, Q. & Wang, S. (2019) The performance of Tetranychus urticae on five melon cultivars is correlated with leaf thickness. Systematic and Applied Acarology, 24 (4), 645–658.

  219.         https://doi.org/10.11158/saa.24.4.10

  220. Yalçin, K., Döker, Ý. & Kazak, C. (2022) Impact of citrus species on the biological characteristics and life table parameters of Eutetranychus orientalis (Klein) (Acari: Tetranychidae). Systematic and Applied Acarology, 27 (1), 107–117.

  221.         https://doi.org/10.11158/saa.27.1.11

  222. Yin, W.D., Qiu, G.S., Yan, W.T., Sun, L.N., Zhang, H.J., Ma, C.S. & Adaobi, U.P. (2013) Age-stage two-sex life tables of Panonychus ulmi (Acari: Tetranychidae), on different apple varieties. Journal of Economic Entomology, 106 (5), 2118–2125.

  223.         https://doi.org/10.1603/EC12491

  224. Yin, W.-D., Yan, W.-T., Qiu, G.-S., Zhang, H.-J. & Ma, C.-S. (2012) Age-stage two-sex life tables of the experimental population of Panonychus ulmi (Acari: Tetranychidae) on apples Malus sieversii subsp. kirghisorum and M. domestica Golden Delicious. Acta Entomologica Sinica, 55 (10), 1230–1238.

  225. Yuan, H.-X., Li, Q., Yang S., Zhao, Y.-Y., Guo, Y.-L. & Zhang, J.-P. (2012) Effects of cotton cultivars on the population dynamics and population parameters of Tetranychus turkestani. Chinese Journal of Applied Entomology, 49 (4), 923–931.

  226. Zajitschek, F., Georgolopoulos, G., Vourlou, A., Ericsson, M., Zajitschek, S.R., Friberg, U. & Maklakov, A.A. (2019) Evolution under dietary restriction decouples survival from fecundity in Drosophila melanogaster females. The Journals of Gerontology: Series A, 74 (10), 1542–1548.

  227.         https://doi.org/10.1093/gerona/gly070

  228. Zajitschek, F., Zajitschek, S.R., Canton, C., Georgolopoulos, G., Friberg, U. & Maklakov, A.A. (2016) Evolution under dietary restriction increases male reproductive performance without survival cost. Proceedings of the Royal Society B: Biological Sciences, 283 (1825), 20152726.

  229.         https://doi.org/10.1098/rspb.2015.2726

  230. Zanardi, O.Z., Bordini, G.P., Franco, A.A., de Morais, M.R. & Yamamoto, P.T. (2015) Development and reproduction of Panonychus citri (Prostigmata: Tetranychidae) on different species and varieties of citrus plants. Experimental and Applied Acarology, 67 (4), 565–581.

  231.         https://doi.org/10.1007/s10493-015-9968-2

  232. Zanco, B., Rapley, L., Johnstone, J.N., Dedman, A., Mirth, C.K., Sgrò, C.M. & Piper, M.D. (2021a) Drosophila melanogaster females prioritise dietary sterols for producing high quality eggs. bioRxiv.

  233.         https://doi.org/10.1101/2021.06.04.447167

  234. Zanco, B., Mirth, C.K., Sgrò, C.M. & Piper, M.D. (2021b) A dietary sterol trade-off determines lifespan responses to dietary restriction in Drosophila melanogaster females. Elife, 10, e62335.

  235.         https://doi.org/10.7554/eLife.62335

  236. Zera, A.J. & Harshman, L.G. (2001) The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics, 32 (1), 95–126.

  237.                 https://doi.org/10.1146/annurev.ecolsys.32.081501.114006