Skip to main content Skip to main navigation menu Skip to site footer
Type: Review
Published: 2021-12-31
Page range: 28–34
Abstract views: 864
PDF downloaded: 8

A survey of lifespan in Winterschmidtiidae (Sarcoptiformes: Astigmata)

Manaaki-Whenua-Landcare Research, Private Bag 92170, Auckland, New Zealand, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
Acari Life cycle development lifespan free-living mites parasitic mites phoretic mites Winterschmidtiidae

Abstract

The Winterschmidtiidae are a family of over 140 species of fungivorous, saprophagous, predatory and/or parasitic mites in insect/vertebrate nests, in decaying organic matter, in soils and on plants worldwide. In this review, I provide a survey of the immature developmental time, adult longevity and lifespan of the Winterschmidtiidae as part of the series on the lifespans in the Acari. The complete life cycle in this family includes five immature stages (the egg, larva, protonymph, deutonymph and tritonymph) and adult male/female, with deutonymphs lost in some genera such as Czenspinskia and Oulenziella. Development or lifespan data have been reported for only three species (< 3%) of the Winterschmidtiidae, and the experimentally measured lifespans of one to two months most likely reflect those of the summer generation. Afrocalvolia nataliae has two generations per year: the summer generation, which has no deutonymph stage, is mainly devoted to feeding and reproduction and lasts for one month only; the winter generation, however, has a deutonymph stage to resist the cold conditions and lasts for as long as 11 months.

References

  1. Ahadiyat, A. & Ostovan. H. (2006) Observations on the biology of Winterschmidtia hamadryas (Vitzthum) (Acari: Astigmata: Winterschmidtiidae) associated with the almond bark beetle, Scolytus amygdali Guerin-Meneville (Coleoptera: Scolytidae) in Iran. Belgian Journal of Entomology, 8 (2), 153–164.

  2. Atcheson, W.C. (1953) An ecological study of three species of mites on American Linden. Journal of Economic Entomology, 46 (4), 705. https://doi.org/10.1093/jee/46.4.705

  3. Barbosa, M.F.C. & Moraes, G.J. (2016) Potential of astigmatid mites (Acari: Astigmatina) as prey for rearing edaphic predatory mites of the families Laelapidae and Rhodacaridae (Acari: Mesostigmata). Experimental & Applied Acarology, 69, 289–296. https://doi.org/10.1007/s10493-016-0043-4

  4. Barbosa, M.F.C. & De Moraes, G.J. (2021) Mites of the family Winterschmidtiidae (Acari: Sarcoptiformes: Astigmatina) from agricultural habitats in Brazil, with description of a new species and a key to species reported. Systematic & Applied Acarology, 26 (6), 1040–1054. https://doi.org/10.11158/saa.26.6.3

  5. Chen, X., Sun, L., Zhang, Y.X., Zhao, L.L. & Lin, J.Z. (2020) Differing infection of Isaria fumosorosea (Wize) Brown & Smith in an aphid (Myzus persicae [Sulzer]) and predatory mite (Neoseiulus cucumeris [Oudemans]) under a scanning electron microscope. Systematic & Applied Acarology, 25 (12), 2263–2272. https://doi.org/10.11158/saa.25.12.9

  6. Cooreman, J. (1942) Notes et observations sur les acariens. II. Bulletin de l’Institut royal des sciences naturelles de Belgique, 18 (58), 1–10.

  7. Cowan, D.P. (1984) Life history and male dimorphism in the mite Kennethiella trisetosa (Acarina: Winterschmidtiidae), and its symbiotic relationship with the wasp Ancistrocerus antilope (Hymenoptera: Eumenidae). Annals of the Entomological Society of America, 77, 725–732. https://doi.org/10.1093/aesa/77.6.725

  8. Dosse, G. & Schneider, I. (1957) Biologie und Lebensweise von Czenspinskia lordi Nesbitt (Acar., Sarcoptiformes). Zeitschrift für Angewandte Zoologie, 44, 403–418. [in German]

  9. Eickwort, G.C. (1994) Evolution and life history patterns of mites associated with bees. In: Houck, M. (Ed.), Mites. Ecological and evolutionary analyses of life-history patterns. Chapman and Hall, New York, pp. 136–159. https://doi.org/10.1007/978-1-4615-2389-5_9

  10. Fain, A. & Galloway, T.D. (1993) Mites (Acari) from nests of sea birds in New Zealand. I.-Description and developmental stages of Psylloglyphus parapsyllus n. sp. (Winterschmidtiidae). Acarologia, 34 (2), 159–166.

  11. Fan, Q.H., Dayal, S.S., Fong, H.M., Rakuita, P. & Ram, J.A. (2020a) A contribution to the fauna of mites (Acari) in Fiji. Systematic & Applied Acarology, 25 (8), 1444–1460. https://doi.org/10.11158/saa.25.8.7

  12. Fan, Q.-H., George, S. & Kumarasinghe, L. (2010) Genus Acalvolia (Acari: Winterschmidtiidae), with the description of a new species from the USA. Zootaxa, 2719, 41–61. https://doi.org/10.11646/zootaxa.2719.1.4

  13. Fan, Q.-H., George, S. & Kumarasinghe, L. (2012) Redescription of Oulenzia arboricola (Oudemans, 1928), type species of Oulenzia Radford, 1950 (Acari: Astigmata: Winterschmidtiidae). Systematic & Applied Acarology, 17, 333–338. https://doi.org/10.11158/saa.17.3.11

  14. Fan, Q.-H., George, S., Li, D.-M. & Zhang, Z.-Q. (2015) Establishment of Oulenziella gen. nov. for Oulenzia bakeri (Hughes, 1962) (Acari: Winterschmidtiidae). Zootaxa, 3949, 191–202. https://doi.org/10.11646/zootaxa.3949.2.2

  15. Fan, Q.-H., Li, D.M. & George, S. (2020b) Ontogenetic stages of Oulenziella bakeri (Hughes) (Acari: Winterschmidtiidae). Zootaxa, 4900 (1), 62–101.  https://doi.org/10.11646/zootaxa.4900.1.7

  16. Faradonbeh, M.M., Ostovan, H., Gheibi, M & OConnor, B.M. (2018) A review on genus Calvolia Oudemans, 1911 (Acari: Winterschmidtiidae) with a new record for Iranian fauna. Journal of Entomological Research, 10 (1), 1–12

  17. Fashing, N.J. (1994) Life history patterns of astigmatid inhabitants of water-filled treeholes. In: Houck, M. (Ed.), Mites. Ecological and evolutionary analyses of life-history patterns. Chapman and Hall, New York, pp. 160–185. https://doi.org/10.1007/978-1-4615-2389-5_7

  18. Houck, M.A. & OConnor, B.M. (1991) Ecological and evolutionary significance of phoresy in the Astigmata. Annual Review of Entomology, 36, 611–636. https://doi.org/10.1146/annurev.en.36.010191.003143

  19. Hughes, A.M. (1962) The genus Calvolia Oudemans, 1911 (Acari: Sarcoptiformes). Acarologia, 4, 48–63.

  20. Ji, J., Song, Z.W., Xie, S.Y. & Zhang, Z.Q. (2020) Cross-mating between Chinese population of Neoseiulus californicus (Acari: Phytoseiidae) and that from the commercial one from USA. Systematic & Applied Acarology, 25 (4), 728–734. https://doi.org/10.11158/saa.25.4.11

  21. Kielczewski, B. & Seniczak, S (1972) Cykl drapieznego roztocza Calvolia fraxini E. Turk et F. Turk (Tyroglyphdae, Acarina). Prace komisji nauk rolniczych i komisji nauk leśnych, Poznan, 34, 83–88. [in Polish]

  22. Klompen, J.S.H., Lukoschus, F.S. & OConnor, B.M. (1987) Ontogeny, life history and sex ratio evolution in Ensliniella kostylevi (Acari: Winterschmidtiidae). Journal of Zoology London, 213, 591–607. https://doi.org/10.1111/j.1469-7998.1987.tb03728.x

  23. Klompen, J.S.H. & OConnor, B.M. (1995) Systematic relationships and the evolution of some life history aspects in the mite genus Ensliniella Vitzthum, 1925 (Acari: Winterschmidtiidae). Journal of Natural History, 29, 111–135. https://doi.org/10.1080/00222939500770061

  24. Krombein, K.V. (1967) Trap-nesting wasps and bees life history, nests and associates. Smithsonian Press Washington, DC, 576 pp. https://doi.org/10.5962/bhl.title.46295

  25. Liu, J.F. & Zhang, Z.Q. (2016) Effects of short-term exposure to low temperature on survival, development and reproduction of banana-associated Oulenziella bakeri (Acari: Winterschmidtiidae). Systematic & Applied Acarology, 2 (8), 1078–1086. https://doi.org/10.11158/saa.21.8.8

  26. Massaro, M., Martin, J.P.I. & Moraes, G.J. (2016) Factitious food for mass production of predaceous phytoseiid mites (Acari: Phytoseiidae) commonly found in Brazil. Experimental & Applied Acarology, 70, 411–420. https://doi.org/10.1007/s10493-016-0087-5

  27. OConnor, B.M. (1982) Evolutionary ecology of astigmatid mites. Annual Review of Entomology, 27, 385–409. https://doi.org/10.1146/annurev.en.27.010182.002125

  28. OConnor, B.M. (1994) Life history modifications in astigmatid mites. In: Houck, M. (Ed.), Mites. Ecological and evolutionary analyses of life-history patterns. Chapman and Hall, New York, pp. 136–159. https://doi.org/10.1007/978-1-4615-2389-5_6

  29. OConnor, B.M. (2009) Astigmatina. In: Krantz, G.W. & Walter, D.E. (eds) A Manual of Acarology. 3rd edn. Texas Tech University Press, Lubbock, TX, pp. 565–657.

  30. OConnor, B.M. & Eickwort, G.C. (1988) Morphology, ontogeny, biology and systematics of the genus Vidia (Acari: Winterschmidtiidae). Acarologia, 24, 147–174.

  31. Okabe, K. & Makino, S. (2003) Life history of Kurosaia jiju (Acari: Winterschmidtiidae) symbiotic with a mason wasp, Anterhynchium flavomarginatum micado (Hymenoptera: Eumenidae). Annals of the Entomological Society of America, 96(1), 652–659.  https://doi.org/10.1603/0013-8746(2003)096[0652:LHOKJA]2.0.CO;2

  32. Okabe, K. & Makino, S. (2008) Life cycle and sexual mode adaptations of the parasitic mite Ensliniella parasitica (Acari: Winterschmidtiidae) to its host, the eumenine wasp Allodynerus delphinalis (Hymenoptera: Vespidae). Canadian Journal of Zoology, 86 (6), 470–478.  https://doi.org/10.1139/Z08-022

  33. Okabe, K. & Makino, S. (2010) Conditional mutualism between Allodynerus delphinalis (Hymenoptera: Vespidae) and Ensliniella parasitica (Astigmata: Winterschmidtiidae) may determine maximum parasitic mite infestation. Environmental Entomology, 39 (2), 424–429. https://doi.org/10.1603/EN09208

  34. Osborne, L.S. & Landa, Z. (1992) Biological control of whiteflies with entomopathogenic fungi. Florida Entomologist, 75 (4), 456–471. https://doi.org/10.2307/3496127

  35. Pascua, M.S., Rocca, M., Greco, N. & De Clercq, P. (2020) Typha angustifolia L. pollen as an alternative food for the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Systematic & Applied Acarology, 25, 51–62. https://doi.org/10.11158/saa.25.1.4

  36. Schatz, H., Behan-Pelletier, V.M., OConnor, B.M. & Norton, R.A. (2011) Suborder Oribatida van der Hammen, 1968. In: Zhang, Z.-Q. (ed). Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 141–148. https://doi.org/10.11646/zootaxa.3148.1.26

  37. Seniczak, S. (1977) Morphology of developmental stages of Calvolia fraxini E. Turk et F. Turk (Acarina: Tyroglyphidae). Bulletin de la Société des Amis des Sciences et des Lettres de Poznan. Seria D, 17, 183–208.

  38. Walter, D.E. & Proctor, H.C. (2013) Mites on plants. In: Walter, D.E. & Proctor, H.C. (Eds.), Mites: ecology, evolution & behaviour. Springer, Dordrecht, pp. 281–339. https://doi.org/10.1007/978-94-007-7164-2_8

  39. Xie, L., Yan, Y. & Zhang, Z.Q. (2018) Development, survival and reproduction of Stratiolaelaps scimitus (Acari: Laelapidae) on four diets. Systematic and Applied Acarology, 23 (4), 779–794. https://doi.org/10.11158/saa.23.4.16

  40. Zhang, Y.X., Sun, L., Lin, G.Y., Lin, J.Z., Chen, X., Ji, J., Zhang, Z.Q. & Saito, Y. (2015) A novel use of predatory mites for dissemination of fungal pathogen for insect biocontrol: The case of Amblyseius swirskii and Neoseiulus cucumeris (Phytoseiidae) as vectors of Beauveria bassiana against Diaphorina citri (Psyllidae). Systematic and Applied Acarology, 20 (2), 177–187. https://doi.org/10.11158/saa.20.2.4

  41. Zhu, R., Guo, J.J., Yi, T.C., Xiao, R. & Jin, D.C. (2019) Functional and numerical responses of Neoseiulus californicus (McGregor) to eggs and nymphs of Oulenziella bakeri and Tetranychus urticae. Systematic & Applied Acarology, 24 (7), 1225–1235. https://doi.org/10.11158/saa.24.7.7