Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-06-27
Page range: 316-328
Abstract views: 138
PDF downloaded: 6

Towards a time-tree solution for Branchiopoda diversification: a jackknife assessment of fossil age priors

Laboratoire de Biologie Computationnelle et Quantitative (LCQB); Sorbonne Université, CNRS, IBPS, UMR7238; Paris, France
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
MCMCtree node dating Phyllopoda Spinicaudata Anostraca Notostraca Cladocera time-tree calibration

Abstract

An understanding of Branchiopoda’s evolutionary history is crucial for a comprehensive knowledge of the Pancrustacea tree of life, given their close evolutionary relationship with Hexapoda. Despite significant advances in molecular and morphological phylogenetics that have resolved much of the branchiopod backbone topology, a reliable temporal framework remains elusive. Key challenges include a sparse fossil record, long-term morphological stasis, and past topological inconsistencies. Leveraging a Bayesian Inference approach and the most extensive phylogenomic dataset for branchiopod to date, encompassing 46 species and over 130 genes, we inferred a time-calibrated phylogenetic tree. Furthermore, to strengthen the confidence in our divergence times estimation, we assessed the impact of age priors, topological uncertainties, and gene trees which are discordant from the species trees. Our results are largely consistent with the fossil record and with previous studies, indicating that Branchiopoda originated between 400 and 500 million years ago, and the orders of large branchiopods diversified during the Mesozoic. Concerning Cladocera, results remain problematic, with a sharper uncertainty in the diversification time with respect to the fossil record. Though, the jackknife resampling of fossils and the other sensitivity analyses proved our calibration method to be robust, suggesting that the difficulties in obtaining a paleontological-consistent time tree may be hindered by the variability in branchiopod substitution rates and topological instability within certain clades.

References

  1. Abascal, F., Zardoya, R. & Telford, M.J. (2010) Translatorx: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 38 (Suppl 2), W7–W13. https://doi.org/10.1093/nar/gkq291
  2. Alencar, L.R., Quental, T.B., Grazziotin, F.G., Alfaro, M.L., Martins, M., Venzon, M. & Zaher, H. (2016) Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Molecular Phylogenetics and Evolution, 105, 50–62. https://doi.org/10.1016/j.ympev.2016.07.029
  3. Ax, P. (1999) Das System der Metazoa II. Ein Lehrbuch der phylogenetischen Systematik. Fischer, Stuttgart, 384 pp.
  4. Baldwin-Brown, J.G., Weeks, S.C. & Long, A.D. (2018) A new standard for crustacean genomes: the highly contiguous, annotated genome assembly of the clam shrimp Eulimnadia texana reveals HOX gene order and identifies the sex chromosome. Genome Biology and Evolution, 10 (1), 143–156. https://doi.org/10.1093/gbe/evx280
  5. Bánki, O., Roskov, Y., Döring, M., Ower, G., Hernández Robles, D.R., Plata Corredor, C.A., Stjernegaard Jeppesen, T., Örn, A., Vandepitte, L., Hobern, D., Schalk, P., DeWalt, R.E., Ma, K., Miller, J., Orrell, T., Aalbu, R., Abbott, J., Adlard, R., Aedo, C., et al. (2024) Catalogue of Life (Annual Checklist 2024). Catalogue of Life, Amsterdam, Netherlands. https://doi.org/10.48580/dgmv5
  6. Bernot, J.P., Owen, C.L., Wolfe, J.M., Meland, K., Olesen, J. & Crandall, K.A. (2023) Major revisions in pancrustacean phylogeny and evidence of sensitivity to taxon sampling. Molecular Biology and Evolution, 40 (8), msad175. https://doi.org/10.1007/978-1-4020-8259-7_18
  7. Brendonck, L., Rogers, D.C., Olesen, J., Weeks, S. & Hoeh, W.R. (2008) Global diversity of large branchiopods (Crustacea: Branchiopoda) in freshwater. Freshwater Animal Diversity Assessment, 595, 167–176.
  8. Capella-Gutiérrez, S., Silla-Martıénez, J.M. & Gabaldòn, T. (2009) Trimal: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25 (15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  9. Carruthers, T., Sun, M., Baker, W. J., Smith, S.A., De Vos, J.M. & Eiserhardt, W.L. (2022) The implications of incongruence between gene tree and species tree topologies for divergence time estimation. Systematic Biology, 71 (5), 1124–1146. https://doi.org/10.1093/sysbio/syac012
  10. Castellucci, F., Luchetti, A. & Mantovani, B. (2022) Exploring mitogenome evolution in Branchiopoda (Crustacea) lineages reveals gene order rearrangements in Cladocera. Scientific Reports, 12 (1), 4931. https://doi.org/10.1038/s41598-022-08873-y
  11. Chen, P.J. & Shen, Y.B. (1985) An introduction to fossil Conchostraca. Science Press, Beijing, 241 pp. [In Chinese]
  12. Colbourne, J.K., Pfrender, M.E., Gilbert, D., Thomas, W.K., Tucker, A., Oakley, T.H., Tokishita, S., Aerts, A., Arnold, G.J., Basu, M.K., Bauer, D.J., Cáceres, C.E., Carmel, L., Casola, C., Choi, J.-H., Detter, J.C., Dong, Q., Dusheyko, S., Eads, B.D., Fröhlich, T., Geiler-Samerotte, K.A., Gerlach, D., Hatcher, P., Jogdeo, S., Krijgsveld, J., Kriventseva, E.V., Kültz, D., Laforsch, C., Lindquist, E., Lopez, J., Manak, J.R., Muller, J., Pangilinan, J., Patwardhan, R.P., Pitluck, S., Pritham, E.J., Rechtsteiner, A., Rho, M., Rogozin, I.B., Sakarya, O., Salamov, A., Schaack, S., Shapiro, H., Shiga, Y., Skalitzky, C., Smith, Z., Souvorov, A., Sung, W., Tang, Z., Tsuchiya, D., Tu, H., Vos, H., Wang, M., Wolf, Y.I., Yamagata, H., Yamada, T., Ye, Y., Shaw, J.R., Andrews, J., Crease, T.J., Tang, H., Lucas, S.M., Robertson, H.M., Bork, P., Koonin, E.V., Zdobnov, E.M., Grigoriev, I.V., Lynch, M. & Boore, J.L. (2011) The ecoresponsive genome of Daphnia pulex. Science, 331 (6017), 555–561. https://doi.org/10.1126/science.1197761
  13. Forni, G., Martelossi, J., Valero, P., Hennemann, F.H., Conle, O., Luchetti, A. & Mantovani, B. (2022) Macroevolutionary analyses provide new evidence of phasmid wings evolution as a reversible process. Systematic Biology, 71 (6), 1471–1486. https://doi.org/10.1093/sysbio/syac038
  14. Forro, L., Korovchinsky, N.M., Kotov, A.A. & Petrusek, A. (2008) Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Freshwater Animal Diversity Assessment, 595, 177–184. https://doi.org/10.1007/978-1-4020-8259-7_19
  15. Fyer, G. (1987) A new classification of the branchiopod Crustacea. Zoological Journal of the Linnean Society, 91(4), 357–383. https://doi.org/10.1111/j.1096-3642.1987.tb01420.x
  16. Fu, L.M., Niu, B.F., Zhu, Z.W., Wu, S.T. & Li, W.Z. (2012). CD-HIT: Accelerated for clustering the nextgeneration sequencing data. Bioinformatics, 28 (23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565
  17. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q.D., Chen, Z.H., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. & Regev, A. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29 (7), 644–652. https://doi.org/10.1038/nbt.1883
  18. Grau-Bové, X., Navarrete, C., Chiva, C., Pribasnig, T., Antó, M., Torruella, G., Galindo, L. J., Lang, B.F., Moreira, D., López-Garcia, P., Ruiz-Trillo, I., Schleper, C., Sabidó, E. & Sebé-Pedrós, A. (2022) A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. Nature Ecology & Evolution, 6 (7), 1007–1023. https://doi.org/10.1038/s41559-022-01771-6
  19. Gueriau, P., Rabet, N., Clément, G., Lagebro, L., Vannier, J., Briggs, D.E.G., Charbonnier, S., Olive, S. & Béthoux, O. (2016) A 365-million-year-old freshwater community reveals morphological and ecological stasis in branchiopod crustaceans. Current Biology, 26 (3), 383–390. https://doi.org/10.1016/j.cub.2015.12.039
  20. Hegna, T.A. (2012) Phylogeny and fossil record of branchiopod crustaceans: An integrative approach. Unpublished Ph.D. thesis, Yale University, New Haven, CT.
  21. Hegna, T.A. & Astrop, T.I. (2020) The fossil record of the clam shrimp (Crustacea; Branchiopoda). Zoological Studies, 59, 43. https://doi.org/10.6620/zs.2020.59-43
  22. Huang, D.Y., Cai, C.Y., Fu, Y.Z. & Su, Y.T. (2018). The Middle-Late Jurassic Yanliao entomofauna. Palaeoentomology, 1 (1), 3–31. https://doi.org/10.11646/palaeoentomology.1.1.2
  23. Ikeda, K.T., Hirose, Y., Hiraoka, K., Noro, E., Fujishima, K., Tomita, M. & Kanai, A. (2015) Identification, expression, and molecular evolution of microRNAs in the “living fossil” Triops cancriformis (tadpole shrimp). RNA, 21 (2), 230–242. https://doi.org/10.1261/rna.045799.114
  24. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14 (6), 587–589. https://doi.org/10.1038/nmeth.4285
  25. Kieran Blair, S.R., Hull, J., Escalona, M., Finger, A., Joslin, S.E.K., Sahasrabudhe, R., Marimuthu, M.P.A., Nguyen, O., Chumchim, N., Reister Morris, E., Velazquez, S. & Schreier, A. (2022) The reference genome of the Vernal Pool Tadpole Shrimp, Lepidurus packardi. Journal of Heredity, 113 (6), 706–711. https://doi.org/10.1093/jhered/esac051
  26. Kieran Blair, S.R., Schreier, A., Escalona, M., Finger, A.J., Joslin, S.E.K., Sahasrabudhe, R., Marimuthu, M.P.A., Nguyen, O., Chumchim, N., Reister Morris, E., Mangelson, H. & Hull, J. (2023a) A chromosome-level reference genome for the Versatile Fairy Shrimp, Branchinecta lindahli. Journal of Heredity, 114 (1), 74–80. https://doi.org/10.1093/jhered/esac057
  27. Kieran Blair, S.R., Schreier, A., Escalona, M., Finger, A.J., Joslin, S.E.K., Sahasrabudhe, R., Marimuthu, M.P.A., Nguyen, O., Chumchim, N., Reister Morris, E., Mangelson, H. & Hull, J. (2023b) A draft reference genome of the Vernal Pool Fairy Shrimp, Branchinecta lynchi. Journal of Heredity, 114 (1), 81–87. https://doi.org/10.1093/jhered/esac056
  28. Kotov, A. A. (2007). Jurassic Cladocera (Crustacea, Branchiopoda) with a description of an extinct Mesozoic order. Journal of Natural History, 41 (1-4), 13–37. https://doi.org/10.1080/00222930601164445
  29. Kotov, A. A. (2009a). A revision of the extinct Mesozoic family Prochydorusidae Smirnov, 1992 (Crustacea: Cladocera) with a discussion of its phylogenetic position. Zoological Journal of the Linnean Society, 155 (2), 253–265. https://doi.org/10.1111/j.1096-3642.2008.00412.x
  30. Kotov, A.A. (2009b) New finding of Mesozoic ephippia of the Anomopoda (Crustacea: Cladocera). Journal of Natural History, 43 (9-10), 523–528. https://doi.org/10.1080/00222930802003020
  31. Kotov, A.A. & Taylor, D.J. (2011) Mesozoic fossils (> 145 Mya) suggest the antiquity of the subgenera of Daphnia and their coevolution with chaoborid predators. BMC Evolutionary Biology, 11, 1–9. https://doi.org/10.1186/1471-2148-11-129
  32. Lee, B.Y., Choi, B.S., Kim, M.S., Park, J.C., Jeong, C.B., Han, J. & Lee, J.S. (2019) The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. Aquatic Toxicology, 210, 69–84. https://doi.org/10.1016/j.aquatox.2019.02.009
  33. Lozano-Fernandez, J., Giacomelli, M., Fleming, J.F., Chen, A., Vinther, J., Thomsen, P. F., Glenner, H., Palero, F., Legg, D.A. Iliffe, T.M, Pisani, D. & Olesen, J. (2019) Pancrustacean evolution illuminated by taxon-rich genomic-scale data sets with an expanded remipede sampling. Genome Biology and Evolution, 11 (8), 2055–2070. https://doi.org/10.1093/gbe/evz097
  34. Luchetti, A., Forni, G., Martelossi, J., Savojardo, C., Martelli, P.L., Casadio, R., Skaist, A. M., Wheelan, S.J. & Mantovani, B. (2021) Comparative genomics of tadpole shrimps (Crustacea, Branchiopoda, Notostraca): Dynamic genome evolution against the backdrop of morphological stasis. Genomics, 113 (6), 4163–4172. https://doi.org/10.1016/j.ygeno.2021.11.001
  35. Mathers, T.C., Hammond, R.L., Jenner, R.A., Hänfling, B. & Gomez, A. (2013) Multiple global radiations in tadpole shrimps challenge the concept of ‘living fossils’. PeerJ, 1, e62. https://doi.org/10.7717/peerj.62
  36. Mendes, F.K. & Hahn, M.W. (2016) Gene tree discordance causes apparent substitution rate variation. Systematic Biology, 65 (4), 711–721. https://doi.org/10.1093/sysbio/syw018
  37. Nguyen, L.-T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1), 268–274. https://doi.org/10.1093/molbev/msu300
  38. Nickel, J., Schell, T., Holtzem, T., Thielsch, A., Dennis, S.R., Schlick-Steiner, B.C., Steiner, F.M., Möst, M., Pfenninger, M., Schwenk, K. & Cordellier, M. (2021) Hybridization dynamics and extensive introgression in the Daphnia longispina species complex: new insights from a high-quality Daphnia galeata reference genome. Genome Biology and Evolution, 13 (12), evab267. https://doi.org/10.1093/gbe/evab267
  39. Nicolini, F., Ghiselli, F., Luchetti, A. & Milani, L. (2023a) Bivalves as emerging model systems to study the mechanisms and evolution of sex determination: a genomic point of view. Genome Biology and Evolution, 15 (10), evad181. https://doi.org/10.1093/gbe/evad181
  40. Nicolini, F., Martelossi, J., Forni, G., Savojardo, C., Mantovani, B. & Luchetti, A. (2023b) Comparative genomics of Hox and ParaHox genes among major lineages of Branchiopoda with emphasis on tadpole shrimps. Frontiers in Ecology and Evolution, 11, 1046960. https://doi.org/10.3389/fevo.2023.1046960
  41. Novojilov, N.I. (1960) Podklass Gnathostraca. In: Chernysheva, N.E. (Ed.), Osnovy paleontologii. Chlenistonogie: trilobitoobraznye, i rakoobraznye. Gosudarstvennoe naučno-tehničeskoe izdatel’stvo literatury po geologii i ohrane nedr, Moskva, pp. 216–253.
  42. Oakley, T.H., Wolfe, J.M., Lindgren, A.R. & Zaharoff, A.K. (2013) Phylotranscriptomics to bring the understudied into the fold: Monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Molecular Biology and Evolution, 30 (1), 215–233. https://doi.org/10.1093/molbev/mss216
  43. Olesen, J. (2000) An updated phylogeny of the Conchostraca: Cladocera clade (Branchiopoda, Diplostraca). Crustaceana, 73 (7), 869–886. https://doi.org/10.1163/156854000504877
  44. Olesen, J. (2009) Phylogeny of Branchiopoda (Crustacea)—character evolution and contribution of uniquely preserved fossils. Arthropod Systematics & Phylogeny, 67, 3–39. https://doi.org/10.3897/asp.67.e31686
  45. Olesen, J. & Richter, S. (2013) Onychocaudata (Branchiopoda: Diplostraca), a new high-level taxon in branchiopod systematics. Journal of Crustacean Biology, 33 (1), 62–65. https://doi.org/10.1163/1937240X-00002121
  46. Poschmann, M.J., Hegna, T.A., Astrop, T.I. & Hoffmann, R. (2024) Revision of Lower Devonian clam shrimp (Branchiopoda, Diplostraca) from the Rhenish Massif (Eifel, SW-Germany), and the early colonization of non-marine palaeoenvironments. Palaeobiodiversity and Palaeoenvironments, 104 (3), 535–569. https://doi.org/10.1007/s12549-023-00597-9
  47. Price, B.W., Winter, M., Brooks, S.J., Natural History Museum Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective & Darwin Tree of Life Consortium. (2022) The genome sequence of the blue-tailed damselfly, Ischnura elegans (Vander Linden, 1820). Wellcome Open Research, 7, 66. https://doi.org/10.12688/wellcomeopenres.17691.1
  48. Puttick M.N. (2019) MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics, 35 (24), 5321–5322. https://doi.org/10.1093/bioinformatics/btz554
  49. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032
  50. Recknagel, H., Kamenos, N.A. & Elmer, K.R. (2018) Common lizards break Dollo’s law of irreversibility: genome-wide phylogenomics support a single origin of viviparity and re-evolution of oviparity. Molecular Phylogenetics and Evolution, 127, 579–588. https://doi.org/10.1016/j.ympev.2018.05.029
  51. Reis, M.D. & Yang, Z. (2011) Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Molecular Biology and Evolution, 28 (7), 2161–2172. https://doi.org/10.1093/molbev/msr045
  52. Richter, S., Olesen, J. & Wheeler, W.C. (2007) Phylogeny of Branchiopoda (Crustacea) based on a combined analysis of morphological data and six molecular loci. Cladistics, 23 (4), 301–336. https://doi.org/10.1111/j.1096-0031.2007.00148.x
  53. Savojardo, C., Luchetti, A., Martelli, P.L., Casadio, R. & Mantovani, B. (2019) Draft genomes and genomic divergence of two Lepidurus tadpole shrimp species (Crustacea, Branchiopoda, Notostraca). Molecular Ecology Resources, 19 (1), 235–244. https://doi.org/10.1111/1755-0998.12952
  54. Schwentner, M., Clavier, S., Fritsch, M., Olesen, J., Padhye, S., Timms, B.V. & Richter, S. (2013) Cyclestheria hislopi (Crustacea: Branchiopoda): a group of morphologically cryptic species with origins in the Cretaceous. Molecular Phylogenetics and Evolution, 66 (3), 800–810. https://doi.org/10.1016/j.ympev.2012.11.005
  55. Schwentner, M., Richter, S., Rogers, D.C. & Giribet, G. (2018) Tetraconatan phylogeny with special focus on Malacostraca and Branchiopoda: highlighting the strength of taxon-specific matrices in phylogenomics. Proceedings of the Royal Society B, 285 (1885), 20181524. https://doi.org/10.1098/rspb.2018.1524
  56. Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M. (2015) BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31 (19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351
  57. Sun X.Y. & Cheng, J.H. (2023) Conflicts in mitochondrial phylogenomics of Branchiopoda, with the first complete mitogenome of Laevicaudata (Crustacea: Branchiopoda). Current Issues in Molecular Biology, 45 (2), 820–837. https://doi.org/10.3390/cimb45020054
  58. Sun, X.Y., Xia, X.H. & Yang, Q. (2016) Dating the origin of the major lineages of Branchiopoda. Palaeoworld, 25 (2), 303–317. https://doi.org/10.1016/j.palwor.2015.02.003
  59. Tasch, P. (1969) Branchiopoda. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology (Part R, Arthropoda 4 (1)). The Geological Society of America and The University of Kansas, Boulder, Colorado and Lawrence, Kansas, R128–R191.
  60. Uozumi, T., Ishiwata, K., Grygier, M.J., Sanoamuang, L.O. & Su, Z.H. (2021) Three nuclear protein-coding genes corroborate a recent phylogenomic model of the Branchiopoda (Crustacea) and provide estimates of the divergence times of the major branchiopodan taxa. Genes & Genetic Systems, 96 (1), 13–24. https://doi.org/10.1266/ggs.20-00046
  61. Van Damme, K. & Kotov, A.A. (2016) The fossil record of the Cladocera (Crustacea: Branchiopoda): Evidence and hypotheses. Earth-Science Reviews, 163, 162–189. https://doi.org/10.1016/j.earscirev.2016.10.009
  62. Van Damme, K., Cornetti, L., Fields, P.D. & Ebert, D. (2022) Whole-genome phylogenetic reconstruction as a powerful tool to reveal homoplasy and ancient rapid radiation in waterflea evolution. Systematic Biology, 71 (4), 777–787. https://doi.org/10.1093/sysbio/syab094
  63. Wersebe, M.J., Sherman, R.E., Jeyasingh, P.D. & Weider, L.J. (2023) The roles of recombination and selection in shaping genomic divergence in an incipient ecological species complex. Molecular Ecology, 32 (6), 1478–1496. https://doi.org/10.1111/mec.16383
  64. Wolfe, J.M., Daley, A.C., Legg, D.A. & Edgecombe, G.D. (2016) Fossil calibrations for the arthropod Tree of Life. Earth-Science Reviews, 160, 43–110. https://doi.org/10.1016/j.earscirev.2016.06.008
  65. Xu, S.L., Han, B.P., Martínez, A., Schwentner, M., Fontaneto, D., Dumont, H.J. & Kotov, A.A. (2021) Mitogenomics of Cladocera (Branchiopoda): Marked gene order rearrangements and independent predation roots. Molecular Phylogenetics and Evolution, 164, 107275. https://doi.org/10.1016/j.ympev.2021.107275
  66. Yang, Z. (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24 (8), 1586–1591. https://doi.org/10.1093/molbev/msm088
  67. Zhang, W.T., Chen, P.J. & Shen, Y.B. (1976) Fossil Conchostraca of China. Science Press, Beijing, 473 pp. [In Chinese]
  68. Zhang, F., Ding, Y.H., Zhou, Q.S., Wu, J., Luo, A.R. & Zhu, C.D. (2019) A high-quality draft genome assembly of Sinella curviseta: A soil model organism (Collembola). Genome Biology and Evolution, 11 (2), 521–530. https://doi.org/10.1093/gbe/evz013