Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-12-18
Page range: 665–678
Abstract views: 241
PDF downloaded: 8

Confocal autofluorescence microscopy revealed the fine morphology of the amber preserved mite Congovidia glesoconomorphi sp. nov. (Acari: Hemisarcoptidae) phoretic on a mycterid beetle

Federal Public Budgetary Scientific Institution, All-Russian Research Institute of Plant Protection, 396030 Voronezh, Russia; Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia
Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
Natural History Museum of Denmark, 2100 Copenhagen, Denmark
Cherepovets State University, Cherepovets, Vologda Region, Russia; Borissiak Paleontological Institute, Russian Academy of Sciences, 117647 Moscow, Russia
Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
Acari Hemisarcoptidae astigmatid mites phoresy Mycteridae morphology late Eocene taxonomy

Abstract

We examined three astigmatic mite specimens phoretic on the beetle Glesoconomorphus ekaterinae from Eocene Rovno amber. Due to the precious nature of this amber piece, housing the name-bearing holotype of the host beetle, traditional trimming for the application of high-resolution imaging techniques at small focal distances was unfeasible. To overcome this challenge, we employed a combination of confocal microscopy relying on the autofluorescence properties of the mite chitinous exoskeleton and long working distance / water immersion objectives. This innovative approach successfully resolved the minute mite features from a considerable distance (700 μm). Based on these data, we describe many taxonomically important characters and identify these mites as a new species, Congovidia glesoconomorphi sp. nov., within the family Hemisarcoptidae. This represents the first fossil record for the mite family. Additionally, we provide a key for phoretic deutonymphs of all known species of Congovidia. As larvae of many extant Eurypinae live in subcortical spaces of decomposing tree trunks, we suggest that the mite C. glesoconomorphi similarly occupied subcortical niches in decayed wood and utilized adult beetles of G. ekaterinae for dispersal.

References

  1. Ball, A.D., Goral, T. & Kamanli, S.A. (2017) Confocal microscopy applied to paleontological specimens. The Paleontological Society Papers, 22, 39–55. https://doi.org/10.1017/scs.2017.7
  2. Beron, P. (2021) Acarorum catalogus IX Acariformes Acaridida Schizoglyphoidea (Schizoglyphidae) Histiostomatoidea (Histiostomatidae, Guanolichidae) Canestrinioidea (Canestriniidae, Chetochelacaridae, Lophonotacaridae, Heterocoptidae) Hemisarcoptoidea (Chaetodactylidae, Hyadesiidae, Algophagidae, Hemisarcoptidae, Carpoglyphidae, Winterschmidtiidae. Pensoft & National Museum of Natural History, Sofia, 396 pp. https://doi.org/10.3897/ab.e68613
  3. Chitimia-Dobler, L., Mans, B.J., Handschuh, S. & Dunlop, J.A. (2022) A remarkable assemblage of ticks from mid-Cretaceous Burmese amber. Parasitology, 149, 820–830. https://doi.org/10.1017/S0031182022000269
  4. Dunlop, J.A., Penney, D. & Jekel, D. (2011a) A summary list of fossil spiders and their relatives. In: Platnick N. (Ed.), The world spider catalog, version 12.0. American Museum of Natural History, New York, 258 pp.
  5. Dunlop, J.A., Wirth, S., Penney, D., McNeil, A., Bradley, R.S., Withers, P.J. & Preziosi, R.F. (2011b) A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography. Biology Letters, 8, 457–460. https://doi.org/10.1098/rsbl.2011.0923
  6. Engel, M.S., Nel, A., Azar, D., Soriano, C., Tafforeau, P., Neraudeau, D., Colin, J.-P. & Perrichot, V. (2011) New, primitive termites (Isoptera) from Early Cretaceous ambers of France and Lebanon. Palaeodiversity, 4, 39–49.
  7. Fain, A. & Camerik, A.M. (1977) The life cycle of Congovidia brasiliensis sp. n. a saproglyphid mite associated with a wasp (Acarina, Astigmata). Bulletin et Annales de la Société Royale Belge d’Entomologie, 113, 44–51.
  8. Fain, A. & Elsen, P. (1972) Notes sur les acariens parasites ou commensaux des mouches tse-tses. 1. Familles Saproglyphidae et Anoetidae (Sarcoptiformes). Acta Zoologica et Pathologica Antverpiensia, 55, 71–90.
  9. Fain A., Hurst, G.D.D., Tweddle, J.C., Lachlan, R.F., Majerus, M.E.N. & Britt, D.P. (1995) Description and observations of two new species of Hemisarcoptidae from deutonymphs phoretic on Coccinellidae (Coleoptera) in Britain. International Journal of Acarology, 21 (2), 99–106. https://doi.org/10.1080/01647959508684050
  10. Fain A., Hurst, G.D.D., Fassotte, C., Webberley, K.M., Sloggett, J.J. & Majerus, M.E.N. (1997) New observations on the mites of the family Hemisarcoptidae (Acari: Astigmata) phoretic on Coccinellidae (Coleoptera). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Entomologie, 67, 89–94.
  11. Fu, Y.Z., Li, Y.D., Su, Y.T., Cai, C.Y. & Huang, D.Y. (2021) Application of confocal laser scanning microscopy to the study of amber bioinclusions. Palaeoentomology, 4 (3), 266–278. https://doi.org/10.11646/palaeoentomology.4.3.14
  12. Grandjean, F. (1939) La chaetotaxie des pattes chez les Acaridiae. Bulletin de la Société Zoologique de France, 64, 50–60.
  13. Griffiths, D.A. (1970) A further systematic study of the genus Acarus L., 1758 (Acaridae, Acarina), with a key to species. Bulletin of the British Museum (Natural History). Zoology series, 19, 85–118.
  14. Griffiths, D.A., Atyeo, W.T., Norton, R.A. & Lynch, C.A. (1990) The idiosomal chaetotaxy of astigmatid mites. Journal of Zoology, 220, 1–32. https://doi.org/10.1111/j.1469-7998.1990.tb04291.x
  15. Hsiao, Y. & Pollock, D.A. (2022) Morphology-based phylogeny of oval palm and flower beetles (Coleoptera: Mycteridae: Eurypinae), with descriptions of new genera and species from Australia, Zoological Journal of the Linnean Society, 196 (2), 677–703. https://doi.org/10.1093/zoolinnean/zlab122
  16. Iakovleva, A.I., Aleksandrova, G.N. & Mychko, E.V. (2022) Late Eocene (Priabonian) dinoflagellate cysts from Primorsky quarry, southeast Baltic coast, Kaliningrad Oblast, Russia. Palynology, 46, 1–40.
  17. https://doi.org/10.1080/01916122.2021.1980743
  18. Jenkins Shaw, J., Perkovsky, E.E., Ślipiński, A., Escalona, H. & Solodovnikov, A. (2023) An extralimital fossil of the genus Diagrypnodes (Coleoptera: Salpingidae: Inopeplinae). Historical Biology. https://doi.org/10.1080/08912963.2023.2206858
  19. Kirejtshuk, A.G., Chetverikov, P.E. & Azar, D. (2015) Libanopsinae, new subfamily of the family Sphindidae (Coleoptera, Cucujoidea) from Lower Cretaceous Lebanese amber, with remarks on using confocal microscopy for the study of amber inclusions. Cretaceous Research, 52, 461–479. https://doi.org/10.1016/j.cretres.2014.02.008
  20. Kirichenko-Babko, M. & Perkovsky, E.E. (2023) The first neotropical Carabidae (Coleoptera) from the Eocene of Ukraine: finding the first Old World ant nest beetle related to Eohomopterus in the Rovno amber. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 114 (1–2), 115–124. https://doi.org/10.1017/S1755691023000105
  21. Klimov, P.B., Vorontsov D.D., Azar D., Sidorchuk E.A., Braig H.R., Khaustov A.A. & Tolstikov A.V. (2021) A transitional fossil mite (Astigmata: Levantoglyphidae fam. n.) from the early Cretaceous suggests gradual evolution of phoresy-related metamorphosis. Scientific Reports, 11 (1), e15113. https://doi.org/10.1038/s41598-021-94367-2
  22. Lak, M., Néraudeau, D., Nel, A., Cloetens, P., Perrichot, V. & Tafforeau, P. (2008) Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber. Microscopy and Microanalysis, 14, 251–259. https://doi.org/10.1017/S1431927608080264
  23. Legalov, A.A., Vasilenko, D.V. & Perkovsky, E.E. (2023) New proxy for Moraceae in Priabonian of Europe: first record of the genus Demimaea Pascoe, 1870 (Coleoptera: Curculionidae) from Eocene Rovno amber. Historical Biology, 35, 1322–1328. https://doi.org/10.1080/08912963.2022.2089983
  24. Matalin, A.V., Perkovsky, E.E. & Vasilenko, D.V. (2021) First record of tiger beetles (Coleoptera, Cicindelidae) from Rovno amber with the description of a new genus and species. Zootaxa, 5016 (2), 243–256. https://doi.org/10.11646/zootaxa.5016.2.5
  25. OConnor, B.M. (2009) Cohort Astigmatina. In: Krantz, G.W. & Walter, D.E. (Eds), A manual of acarology. Texas Tech University Press, pp. 565–657.
  26. OConnor, B.M. (2022) Two new genera of winterschmidtiine mites (Acari: Astigmata: Winterschmidtiidae) associated with beetles in the family Bostrichidae (Coleoptera: Polyphaga: Bostrichoidea). Systematic and Applied Acarology, 27 (2), 209–219. https://doi.org/10.11158/saa.27.2.4
  27. Perreau, M., Haelewaters, D. & Tafforeau, P. (2021) A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections. Scientific Reports, 11, 2672. https://doi.org/10.1038/s41598-020-79481-x
  28. Poinar, G.O. (1988) Hair in Dominican amber: Evidence for Tertiary land mammals in the Antilles. Experientia, 44, 88–89. https://doi.org/10.1007/BF01960261
  29. Pollock, D.A. (2010) 11.20. Mycteridae Blanchard, 1845. In: Beutel, R.G. & Leschen, R.A.B. (Eds), Handbook of zoology. Insecta: Coleoptera, Beetles. Vol. 2. W. de Gruyter, Inc., Berlin, 693–699. https://doi.org/10.1515/9783110911213.693
  30. Santiago-Blay, J. A., Jolivet, P. & Verma, K. K. (2012) A natural history of conspecific aggregations in terrestrial arthropods, with emphasis on cycloalexy in leaf beetles (Coleoptera: Chrysomelidae). Terrestrial Arthropod Reviews, 5, 289–355. https://doi.org/10.1163/18749836-05031054
  31. Sidorchuk, E.A. & Klimov, P.B. (2011) Redescription of the mite Glaesacarus rhombeus (Koch & Berendt, 1854) from Baltic amber (Upper Eocene): evidence for female-controlled mating. Journal of Systematic Palaeontology, 9 (2),183–196. https://doi.org/10.1080/14772019.2011.566585
  32. Sidorchuk, E.A. (2013) A new technique for preparation of small-sized amber samples with application to mites. In: Azar, D., Engel, M.S., Jarzembowski, E., Krogmann, L., Nel, A. & Santiago-Blay, J. (Eds), Insect evolution in an amberiferous and stone alphabet. Proceedings of the 6th International Congress on Fossil Insects, Arthropods and Amber, Byblos, Lebanon, 14–18 April 2013. Brill: Leiden, Boston, pp. 189–201.
  33. Sidorchuk, E.A. & Vorontsov, D.D. (2018) Preparation of small-sized 3D amber samples: State of the technique. Palaeoentomology, 1 (1), 80–90. https://doi.org/10.11646/palaeoentomology.1.1.10
  34. Telnov, D., Perkovsky, E.E., Vasilenko, D.V. & Yamamoto, S. (2021) The first fossil Coleoptera record from the Volyn Region, Ukraine, with description of a new Glesoconomorphus (Coleoptera, Mycteridae) in syninclusion with Winterschmidtiidae (Acari) and a key to species. ZooKeys, 1068, 189–201. https://doi.org/10.3897/zookeys.1068.75391
  35. Türk, E. (1963) A new tyroglyphid deutonymph in amber from Chiapas, Mexico. University of California Publications in Entomology, 31, 49–51.
  36. Vorontsov, D. & Voronezhskaya, E.E. (2022) Pushing the limits of optical resolution in the study of the tiniest fossil arthropods. Historical Biology, 34, 2415–2423. https://doi.org/10.1080/08912963.2021.2017920
  37. Vorontsov, D.D., Kolesnikov, V.B., Voronezhskaya, E.E., Perkovsky, E.E., Berto, M.M., Mowery, J., Ochoa, R. & Klimov, P.B. (2023) Beyond the limits of light: an application of super-resolution confocal microscopy (sCLSM) to investigate Eocene amber microfossils. Life, 13, 865. https://doi.org/10.3390/life13040865
  38. Wirth, S.F. & Garonna, A.P. (2015) Histiostoma ovalis (Histiostomatidae, Acari) associated with Ips sexdentatus (Scolytinae, Curculionidae, Coleoptera): Ecology and mite redescription on the basis of formerly unknown adults and nymphs. International Journal of Acarology, 41, 415–428. https://doi.org/10.1080/01647954.2015.1050062