Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-08-25
Page range: 305–318
Abstract views: 358
PDF downloaded: 10

Wing coloration patterns in the Early Jurassic dragonflies as potential indicator of increasing predation pressure from insectivorous reptiles

Institut de Systématique, Évolution, Biodiversité (ISYEB) Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, F-75005 Paris, France; Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000, Rennes, France; CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, F-34095, Montpellier, France
Tannenweg 16, 85134 Stammham, Germany; Jura-Museum Eichstätt, Willibaldsburg, Eichstätt, D-85072, Germany
8 rue de Bouny, Romsée, B-4624, Belgique
Institut de Systématique, Évolution, Biodiversité (ISYEB) Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, F-75005 Paris, France
Insecta Odonatoptera wing coloration predation pressure Palaeozoic-Mesozoic

Abstract

Wing coloration is a very ancient feature among insects. Even the wings of the oldest known Pterygota showed transverse colored bands involved in a putative disruptive function. However, no evidence of wing coloration in the representatives of the superorder Odonatoptera is recorded before the latest Triassic. These were the only insect flying-predators until the pterosaurs began their diversification. Here we argue that the situation dramatically changed in the Early Jurassic, with the simultaneous appearance of Odonata with patterns of coloration in phylogenetically distant clades. It is especially the case in the Heterophlebiidae, a small family closely related to the Anisoptera, in which we could record no less than five different patterns of coloration in the same rather small area of North-Western Europe. At the same time and in the same area, small potentially insectivorous pterosaurs greatly diversified. The increase of the predation pressure on the Odonata is the most probable cause of the appearance of patterns of colored spots and bands on the dragonfly wings at that time. In the period between the Middle Jurassic to Early Cretaceous, the number of Odonata with spots and bands of color on wings dramatically increased, we assume in relation to the predation pressure due to an increasing diversification of insectivorous pterosaurs, but also small feathered dinosaurs and birds.

References

  1. Ansorge, J. (1996) Insekten aus dem Oberen Lias von Grimmen (Vorpommern, Norddeutschland). Neue Paläontologische Abhandlungen, 2, 1–132.
  2. Ansorge, J. (1999) Heterophlebia buckmani—the first insect from the Lower Toarcian Posidonia shale of Holzmaden. Stuttgarter Beiträge zur Naturkunde (B), 275, 1–9.
  3. Archibald, S.B., Cannings, R.A., Erickson, R.J., Bybee, S.M. & Mathewes, R.W. (2021) The Cephalozygoptera, a new, extinct suborder of Odonata with new taxa from the early Eocene Okanagan Highlands, western North America. Zootaxa, 4934 (1), 1–133. https://doi.org/10.11646/zootaxa.4934.1.1
  4. Arias, M., Leroy, L., Madec, C., Matos, L., Tedore, C., Elias, M. & Gomez, D. (2021) Partial wing transparency works better when disrupting wing edges: evidence from a field experiment. Journal of Evolutionary Biology, 34, 1840–1846. https://doi.org/10.1111/jeb.13943
  5. Badejo, O., Skaldina, O., Gilev, A. & Sorvari, J. (2020) Benefits of insect colours: a review from social insect studies. Oecologia, 194, 27–40. https://doi.org/10.1007/s00442-020-04738-1
  6. Bakker, R.T. (1986) The dinosaur heresies: new theories unlocking the mystery of the dinosaurs and their extinction. William Morrow and Co, New York, 481 pp.
  7. Bechly, G. (1996) Morphologische Untersuchungen am Flügelgeäder der rezenten Libellen und deren Stammgruppenvertreter (Insecta; Pterygota; Odonata), unter besonderer Berücksichtigung der Phylogenetischen Systematik und des Grundplanes der Odonata. Petalura Special Volume, 2, 1–402. (Revised edition of the 1995 publication, with an English appendix including a new phylogenetic system of fossil and Recent Odonata).
  8. Bechly, G. (2016) Phylogenetic systematics of Odonata.—Available at: https://bechly.lima-city.de/phylosys.htm (Accessed 20 July 2022).
  9. Bechly, G., Nel, A., Martínez-Delclòs, X., Jarzembowski, E.A., Coram, R., Martill, D., Fleck, G., Escuillié, F., Wisshak, M.M. & Maisch, M. (2001) A revision and phylogenetic study of Mesozoic Aeshnoptera, with description of several new families, genera and species (Insecta: Odonata: Anisoptera). Neue Paläontologische Abhandlungen, 4, 1–219.
  10. Berger, G. (1989) Über Insektenfunde beim Kanalbau. Fossilien, 1, 44–47.
  11. Bestwick, J., Unwin, D.M., Butler, R.J., Henderson, D.M. & Purnell, M.A. (2018) Pterosaur dietary hypotheses: a review of ideas and approaches. Biological Review, 93, 2021–2048. https://doi.org/10.1111/brv.12431
  12. Bode, A. (1905) Orthoptera und Neuroptera aus dem oberen Lias von Braunschweig. Jahrbuch der Königlich Preussischen Geologischen Landesanstalt und Bergakademie, 25, 218–245.
  13. Bode, A. (1953) Die Insektenfauna des Ostniedersächsischen oberen Lias. Palaeontographica (A), 103, 1–375.
  14. Brachert, Th. (1987) Makrofossilführung der „Siemensi-Geoden“ (Mittlerer Lias Epsilon, Unteres Toarcium) von Kerkhofen/Oberpfalz (Bayern): Neue Insekten- und Pflanzenfunde. Geologische Blätter NO-Bayern, 37, 217–240.
  15. Brauckmann, C. & Gröning, E. (1998) Das älteste fossile Fluginsekt [The oldest fossil flying insect]. Fossilien, 15, 92–94.
  16. Britt, B.B., Dalla Vecchia, F.M., Chure, D.J., Engelmann, G.F., Whiting, M.F. & Scheetz, R.D. (2018) Caelestiventus hanseni gen. et sp. nov. extends the desert-dwelling pterosaur record back 65 million years. Nature Ecology & Evolution, 2, 1386–1392. https://doi.org/10.1038/s41559-018-0627-y
  17. Brodie, P.B. (1845) A history of the fossil insects in the Secondary rocks of England, accompanied by a particular account of the strata in which they occur, and of the circumstances connected with their preservation. John Van Voorst (publ.), London, i–xviii + 1–130. https://doi.org/10.5962/bhl.title.52321
  18. Brodie, P.B. (1849) Notice on the discovery of a dragon-fly and a new species of Leptolepis in the Upper Lias near Cheltenham, with a few remarks on that formation in Gloucestershire. Proceedings of the Geological Society, Quarterly Geological Journal of London, 5, 31–37. https://doi.org/10.1144/GSL.JGS.1849.005.01-02.13
  19. Buckland, W. (1829) On the discovery of a new species of pterodactyle in the Lias at Lyme Regis. Transactions of the Geological Society of London, 3, 217–222. https://doi.org/10.1144/transgslb.3.1.217
  20. Buffetaut, E., Gibout, B. & Drouin, D. (2010) A pterosaur from the Toarcian (Early Jurassic) of the Ardennes (northeastern France). Carnets de Géologie, Letter, 2010/01, 1–6. https://doi.org/10.4267/2042/32427
  21. Chen, J., Zhang, H., Wang, B., Zheng, Y., Wang, X.L. & Zheng, X.T. (2016) New Jurassic tettigarctid cicadas from China with a novel example of disruptive coloration. Acta Palaeontologica Polonica, 61, 853–862. https://doi.org/10.4202/app.00238.2015
  22. Crees, L.D., DeVries, P. & Penz, C.M. (2021) Do hind wing eyespots of Caligo butterflies function in both mating behavior and antipredator defense? (Lepidoptera, Nymphalidae). Annals of the Entomological Society of America, 114, 329–337. https://doi.org/10.1093/aesa/saaa050
  23. Delsate, D. & Wild, R. (2000) Première découverte d’un reptile volant déterminable (Pterosauria, Dorygnathus cf banthensis) du Toarcien inferieur (Jurassique inferieur) de Nancy (Lorraine, France). Bulletin de l’Académie Lorraine des Sciences, 39, 3–14.
  24. Ezcurra, M.D., Nesbitt, S.J., Bronzati, M., Dalla Vecchia, F.M., Agnolin, F.L., Benson, R.B.J., Egli, F.B., Cabreira, S.F., Evers, S.W., Gentil, A.R., Irmis, R.B., Martinelli, A.G., Novas, F.E., da Silva, L.R., Smith, N.D., Stocker, M.R., Turner, A.H. & Langer, M.C. (2020) Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. Nature, 588, 445–449. https://doi.org/10.1038/s41586-020-3011-4
  25. Fang, H., Labandeira, C.C., Ma, Y.M., Zheng, B.Y., Ren, D., Wei, X.L., Liu, J.X. & Wang, Y.J. (2020) Lichen mimesis in mid-Mesozoic lacewings. eLife, 9, e59007. https://doi.org/10.7554/eLife.59007
  26. Fleck, G. & Nel, A. (2003) Revision of the Mesozoic family Aeschnidiidae (Odonata: Anisoptera). Zoologica, 153, 1–180.
  27. Fuffin, C.J. (1993) Mesozoic chondrichthyan faunas: 1. Middle Norian (Upper Triassic) of Luxembourg. Palaeontographica (A), 229, 15–36.
  28. Garrouste, R. & Nel, A. (2015) New Eocene damselflies and first Cenozoic damsel-dragonfly of the isophlebiopteran lineage (Insecta: Odonata). Zootaxa, 4028 (3), 354–366. https://doi.org/10.11646/zootaxa.4028.3.2
  29. Godefroit, P. (1997) Reptilian, therapsid and mammalian teeth from the Upper Triassic of Varangéville (northeastern France). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Sciences de la Terre, 67, 83–102.
  30. Godefroit, P., Cuny, G., Delsate, D. & Roche, M. (1998) Late Triassic vertebrates from Syren (Luxembourg). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 210, 305–343. https://doi.org/10.1127/njgpa/210/1998/305
  31. Grether, G.F. (1996) Sexual selection and survival selection on wing coloration and body size in the rubyspot damselfly Hetaerina americana. Evolution, 50, 1939–1948. https://doi.org/10.1111/j.1558-5646.1996.tb03581.x
  32. Grimaldi, D.A. & Engel, M.S. (2005) Evolution of the insects. Cambridge University Press, Cambridge, UK, i–xv + 1–755.
  33. Guillermo-Ferreira, R., Bispo, C., Appel, E., Kovalev, A. & Gorb, S.N. (2015) Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication. Journal of Insect Physiology, 81, 129–136. https://doi.org/10.1016/j.jinsphys.2015.07.010
  34. Handlirsch, A. (1906) Die Fossilen Insekten und die Phylogenie der Rezenten Formen, parts I-IV. Ein Handbuch fur Palaontologen und Zoologen. W. Engelmann, Leipzig, 640 pp.
  35. Handlirsch, A. (1938) Neue Untersuchungen über die fossilen Insekten mit Ergänzungen und Nachträgen sowie Ausblicken auf phylogenetische, paläogeographische und allgemeine biologische Probleme. Teil 2. Annalen des Naturhistorischen Museums in Wien, 49, 1–240.
  36. Eberhard, W.G. (1991) Copulatory courtship and cryptic female choice in insects. Biological Review, 66, 1–31. https://doi.org/10.1111/j.1469-185X.1991.tb01133.x
  37. Eberhard, W.G. (1994) Evidence for widespread courtship during copulation in 131 species of insects and spiders, and implications for cryptic female choice. Evolution, 48, 711–733. https://doi.org/10.1111/j.1558-5646.1994.tb01356.x
  38. Henrotay, M., Marques, D., Paicheler, J.-C., Gall, J.-C. & Nel, A. (1998 Le Toarcien inférieur des régions de Bascharage et de Bettembourg (G.D. Luxembourg): évidences paléontologiques et sédimentologiques d’environnements restreints proches de l’émersion. Geodiversitas, 20, 263–284.
  39. Hill, R.I. & Vaca, J.F. (2004) Differential wing strength of Pierella butterflies (Nymphalidae, Satyrinae) supports the deflection hypothesis. Biotropica, 36, 362–370. https://doi.org/10.1111/j.1744-7429.2004.tb00328.x
  40. Hof, A., Campagne, P., Rigden, D. Yung, C.J., Lingley, J., Quail, M.A., Hall, N., Darby, A.C. & Saccheri, I.J. (2016) The industrial melanism mutation in British peppered moths is a transposable element. Nature, 534, 102–105. https://doi.org/10.1038/nature17951
  41. Hone, D.W.E. (2020) A review of the taxonomy and palaeoecology of the Anurognathidae (Reptilia, Pterosauria). Acta Geologica Sinica (English Edition), 94, 1676–1692. https://doi.org/10.1111/1755-6724.14585
  42. Hone, D.W.E., Witton, M.P. & Martill, D.M. (2018) New perspectives on pterosaur palaeobiology. Geological Society, London, Special Publications, 455, 1–6. https://doi.org/10.1144/SP455.18
  43. Huang, D.Y., Azar, D., Cai, C., Maksoud, S., Nel, A. & Bechly, G. (2017) Mesomegaloprepidae, a remarkable new damselfly family (Odonata: Zygoptera) from mid-Cretaceous Burmese amber. Cretaceous Research, 73, 1–13. https://doi.org/10.1016/j.cretres.2017.01.003
  44. Jacquelin, L., Desutter-Grandcolas, L., Chintauan-Marquier, I., Boistel, R., Zheng, D.R., Prokop, J. & Nel, A. (2018) New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta). Scientific Reports, 8, 1–7. https://doi.org/10.1038/s41598-017-18615-0
  45. Jarzembowski, E.A. (2005) Colour and behaviour in Late Carboniferous terrestrial arthropods. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 156, 381–386. https://doi.org/10.1127/1860-1804/2005/0156-0381
  46. Kelly, R.S. & Nel, A. (2018a) Revision of the damsel-dragonfly family Campterophlebiidae (Odonata) from the Early Jurassic of England reveals a new genus and species. Alcheringa: An Australasian Journal of Palaeontology, 42, 87–93. https://doi.org/10.1080/03115518.2017.1377767
  47. Kelly, R.S. & Nel, A. (2018b) Revision of some damsel-dragonflies (Odonata, Liassophlebiidae and Anglophlebiidae new family) from the Triassic/Jurassic of England and Antarctica. Journal of Paleontology, 92, 1035–1048. https://doi.org/10.1017/jpa.2018.32
  48. Kemp, D.J. & Rutowski, R.L. (2011) Chapter 2—The role of coloration in mate choice and sexual interactions in butterflies. Advances in the Study of Behavior, 43, 55–92. https://doi.org/10.1016/B978-0-12-380896-7.00002-2
  49. Li, Z., Wang, M., Stidham, T.A., Zhou, Z. & Clarke, J. (2022) Novel evolution of a hyper-elongated tongue in a Cretaceous enantiornithine from China and the evolution of the hyolingual apparatus and feeding in birds. Journal of Anatomy, 240, 627–638. https://doi.org/10.1111/joa.13588.
  50. Maran T. (2017) Mimicry and meaning: structure and semiotics of biological mimicry. Biosemiotics, 16, i–ix, 1–164. https://doi.org/10.1007/978-3-319-50317-2
  51. Martin, R. (1908–1909) Aeschnines. Collections Zoologiques du Baron Edm. de Selys Longchamps, Catalogue systématique et descriptif, 18 & 19, 1–84, 85–156. https://doi.org/10.1111/jzo.12963
  52. Maubeuge, P.L. (1973) Insecte et Stelléroïdes du Jurassique inférieur luxembourgeois. In: Histoire Naturelle du Pays du Luxembourg. Géologie. Publications du Musée National d’Histoire Naturelle du Luxembourg, 1–9.
  53. Mizutani, A., Chahl, J.S. & Srinivasan, M.V. (2005) Motion camouflage in dragonflies. Nature, 423, 604. https://doi.org/10.1038/423604a
  54. Münz, P.A. (1919) A venational study of the suborder Zygoptera (Odonata) with keys for the identification of genera. Memoirs of the Entomological Society (of the Academy of Natural Sciences), 3, 1–78. https://doi.org/10.5962/bhl.title.8499
  55. Naish, D., Witton, M.P. & Martin-Silverstone, E. (2021) Powered flight in hatchling pterosaurs: evidence from wing form and bone strength. Scientific Reports, 11, 1–15. https://doi.org/10.1038/s41598-021-92499-z
  56. Nel, A., Bechly, G., Prokop, J., Béthoux, O. & Fleck, G. (2012) Systematics and evolution of Paleozoic and Mesozoic damselfly-like Odonatoptera of the ‘Protozygopteran’ grade. Journal of Paleontology, 86, 81–104. https://doi.org/10.1666/11-020.1
  57. Nel, A., Martínez-Delclòs, X., Paicheler, J.-C. & Henrotay, M. (1993) Les ‘Anisozygoptera’ fossiles. Phylogénie et classification (Odonata). Martinia Numéro Hors Série, 3, 1–311.
  58. Nel, A. & Paicheler, J.-C. (1993) Les Libellulidae fossiles. Un inventaire critique (Odon., Anisoptera, Libelluloidea). Entomologica Gallica, 4, 166–190.
  59. Nel, A., Papier, F., Stamm-Grauvogel, L. & Gall, J.-C. (1996) Voltzialestes triasicus, n. gen., n. sp., le premier Odonata fossile du Trias des Vosges (France). Morphologie, affinités et phylogénie. (Odonatoptera, Odonata, Protozygoptera). Paleontologia Lombarda, (N.S.), 5: 25–36.
  60. Nel, A. & Poschmann, M.J. (2021) A new representative of the ‘orthopteroid’ family Cnemidolestidae (Archaeorthoptera) from the Early Permian of Germany. Acta Palaeontologica Polonica, 66, 641–646. https://doi.org/10.4202/app.00879.2021
  61. Nel, A., Prokop, J., Pecharová, M., Engel, M.S. & Garrouste, R. (2018) Palaeozoic giant dragonflies were hawker predators. Scientific Reports, 8, 1–5. https://doi.org/10.1038/s41598-018-30629-w
  62. Nel, A. & Weis, R. (2017) A new Early Jurassic damselfly from the Grand Duchy of Luxembourg (Odonata: Campterophlebiidae). Alcheringa: An Australasian Journal of Palaeontology, 41, 378–382. https://doi.org/10.1080/03115518.2017.1289417
  63. Ösi, A. (2011) Feeding-related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet. Lethaia, 44, 136–152. https://doi.org/10.1111/j.1502-3931.2010.00230.x
  64. O’Sullivan, M. (2015) The taxonomic diversity of British Jurassic pterosaurs. PhD Thesis, University of Portsmouth, 1–335.
  65. Outomuro, D. & Johansson, F. (2015) Bird predation selects for wing shape and coloration in a damselfly. Journal of Evolutionary Biology, 28, 791–799. https://doi.org/10.1111/jeb.12605
  66. Outomuro, D., Söderquist, L., Johansson, F., Ödeen, A. & Nordström, K. (2017) The price of looking sexy: visual ecology of a three-level predator–prey system. Functional Ecology, 31, 707–718. https://doi.org/10.1111/1365-2435.12769
  67. Padian, K. (2008) The Early Jurassic pterosaur Campylognathoides Strand, 1928. Special Papers in Palaeontology, 80, 65–107. https://doi.org/10.1111/j.1475-4983.2008.00795.x
  68. Pinheiro, C.E.G., Freitas, A.V.L., Campos, V.C., DeVries, P.J. & Penz, C.M. (2016) Both palatable and unpalatable butterflies use bright colors to signal difficulty of capture to predators. Neotropical Entomology, 45, 107–113. https://doi.org/10.1007/s13744-015-0359-5
  69. Pritykina, L.N. (1981) [New Triassic Odonata of middle Asia]. In: Vishniakova, V.N., Dlussky, G.M. & Pritykina, L.N. (Eds), Novye iskopaemye nasekomye s territorii SSSR. [New fossil insects from the territory of the U.S.S.R.] Trudy Paleontologiceskogo Instituta Akademii Nauk S.S.S.R., 183, 5–42. [In Russian]
  70. Prondvai, E., Stein, K., Ösi, A. & Sander, M.P. (2012) Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies. PLoS ONE, 7, e31392. https://doi.org/10.1371/journal.pone.0031392
  71. Ris, F. (1909–1913) Libellulinen monographisch bearbeitet. Collection Zoologique du Baron Edm. de Selys Longchamps. Catalogue systématique et descriptif, 9-16 bis, 1–1278. https://doi.org/10.5962/bhl.title.9137
  72. Ruxton, G.D., Sherratt, T.N. & Speed, M.P. (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, Oxford, 264 pp. https://doi.org/10.1093/acprof:oso/9780198528609.001.0001
  73. Ruxton, G.D., Speed, M. & Sherratt, T.N. (2004) Evasive mimicry: when (if ever) could mimicry based on difficulty of capture evolve? Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 2135–2142. https://doi.org/10.1098/rspb.2004.2816
  74. Schmidt-Kaler, H., Tischlinger, H. & Werner, W. (1992) Wanderungen in die Erdgeschichte (4). Sulzkirchen und Sengenthal—zwei berühmte Fossilfundstellen am Rande der Frankenalb. Verlag Friedrich Pfeil, München, 112 pp.
  75. Schneider, J.W. & Werneburg, R. (2012) Biostratigraphie des Rotliegend mit Insekten- und Amphibien. In: Deutsche Stratigraphische Kommission (Hrsg., Koordination und Redaktion: H. Lützner and G. Kowalczyk für die Subkommission Perm-Trias): Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe Deutschen Gesellschaft für Geowissenschaften, 61, 110–142. https://doi.org/10.1127/sdgg/61/2012/110
  76. Seymoure, B.M. & Aiello, A. (2015) Keeping the band together: evidence for false boundary disruptive coloration in a butterfly. Journal of Evolutionary Biology, 28, 1618–1624. https://doi.org/10.1111/jeb.12681
  77. Sharov, A.G. (1968) Filogeniya ortopteroidnykh nasekomykh. Trudy Paleontologicheskogo Instituta, Akademiya Nauk S.S.S.R., 118, 1–216. [In Russian, Translated into English in 1971: Phylogeny of the Orthopteroidea. Israel program for scientific translations, Keter Press, Jerusalem, 1–251.]
  78. Stevens, M., Cuthill, I.C., Parraga, C.A. & Troscianko, T. (2006) The effectiveness of disruptive coloration as a concealment strategy. In: Alonso, J.-M., Macknik, S., Martinez, L., Tse, P. & Martinez-Conde, S. (Eds), Progress in brain research. Elsevier Amsterdam, pp. 49–64. https://doi.org/10.1016/S0079-6123(06)55004-6
  79. Suarez-Tovar, C.M., Guillermo-Ferreira, R., Cooper, I.A., Cezario, R.R. & Cordoba-Aguilar, A. (2022) Dragon colors: the nature and function of Odonata (dragonfly and damselfly) coloration. Journal of Zoology, 317, 1–9. https://doi.org/10.1111/jzo.12963
  80. Svensson, E.I. & Friberg, M. (2007) Selective predation on wing morphology in sympatric damselflies. The American Naturalist, 170, 101–112. https://doi.org/10.1086/518181
  81. Tillyard, R.J. (1925) The British Liassic dragonflies. British Museum (Natural History), Fossil Insects, London, 1, 1–39.
  82. Tischlinger, H. (2001) Bemerkungen zur Insekten Taphonomie der Solnhofener Plattenkalke—Remarks on the insect taphonomy of the Solnhofen Lithographic Limestone. Archaeopteryx, 19, 29–44.
  83. Voeten, D.F.A.E., Cubo, J., de Margerie, E., Röper, M., Beyrand, V., Bureš, S., Tafforeau, P. & Sanchez, S. (2018) Wing bone geometry reveals active flight in Archaeopteryx. Nature Communications, 9, 923. https://doi.org/10.1038/s41467-018-03296-8
  84. Wang, M., O’Connor, J.K., Xu, X. & Zhou, Z. (2019) A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature, 569, 256–259. https://doi.org/10.1038/s41586-019-1137-z
  85. Wellnhofer, P. (2009) Archaeopteryx—the icon of evolution. Verlag Dr. Friedrich Pfeil, Munich, 1–208.
  86. Witton, M.P. (2013) Pterosaurs—natural history, evolution, anatomy. Princeton University Press, Princeton and Oxford, 1–304. https://doi.org/10.1515/9781400847655
  87. Witton, M.P. (2015) Flight performance and lifestyle of Dimorphodon macronyx. Flugsaurier 2015, 57–60.
  88. Xu C., Luo C., Jarzembowski E.A., Fang Y. & Wang B. (2022) Aposematic coloration from Mid-Cretaceous Kachin amber. Philosophical Transactions of the Royal Society B, 377, 20210039. https://doi.org/10.1098/rstb.2021.0039
  89. Young, A.M. (1971) Wing coloration and reflectance in Morpho butterflies as related to reproductive behavior and escape from avian predators. Oecologia, 7, 209–222. https://doi.org/10.1007/BF00345212
  90. Zessin, W. (1982) Durchsicht einiger liassischer Odonatopteroida unter Berücksichtigung neuer Funde von Dobbertin in Mecklenburg. Deutsche Entomologische Zeitschrift, 29, 101–106. https://doi.org/10.1002/mmnd.19820290117
  91. Zeuner, F.E. (1962) Fossil insects from the Lower Lias of Charmouth, Dorset. Bulletin of the British Museum, (Natural History), Geology, 7, 155–171.
  92. Zhang, B.L., Fleck, G., Huang, D.Y., Nel, A., Ren, D., Cheng, X.D. & Lin, Q.B. (2006) New isophlebioid dragonflies (Odonata: Isophlebioptera: Campterophlebiidae) from the Middle Jurassic of China. Zootaxa, 1339 (1), 51–68. https://doi.org/10.11646/zootaxa.1339.1.3
  93. Zhou, C., Gao, K., Yi, H., Xue, J., Li, Q., Fox, R.C. (2017) Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea. Royal Society open science, 4, 160672. https://doi.org/10.1098/rsos.160672