Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-10-31
Page range: 465–473
Abstract views: 484
PDF downloaded: 2

Structural features and life habits of †Alienoptera (Polyneoptera, Dictyoptera, Insecta)

Center of Taxonomy and Evolutionary Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
Departments of Zoology and Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic
Institut für Zoologie und Evolutionsforschung, FSU Jena, 07743 Jena, Germany
Department of Entomology & Nematology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 92 Box, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, PR China
Institut für Zoologie und Evolutionsforschung, FSU Jena, 07743 Jena, Germany
Orthoptera Polyneoptera Dictyoptera Insecta †Alienoptera life habits feeding flight mimicry

Abstract

Structural features and life habits of described species of the extinct †Alienoptera are evaluated based on previously published studies on the group. Head structures and feedings habits are addressed, as are the locomotor organs, especially the wings and adhesive devices. Suggested pollen feeding habits and the possible role as pollinators are discussed, as well as hypothesized ant and wasp mimicry and myrmecophily. Species of †Alienoptera were likely predators, in the case of †Caputoraptor elegans Bai, Beutel et Wipfler, 2018 with a unique cephalo-prothoracic prey grasping mechanism. They were likely strong fliers with anatomical dipterism with functional hind wings. Wing joints protected by scale-like sclerotized fore wings probably allowed them to move very efficiently in dense foliage of trees or shrubs and to prey upon smaller insects. Ant mimicry, myrmecophily and “weevil mimicry” are rejected. †Meilia Vršanský et Wang, 2018 is a possible case of wasp mimicry but more evidence is required. Other suggested cases of mimicking wasps are unfounded.

References

  1. Agudelo, A.A. & Rafael, J.A. 2014. Genus Mantillica Westwood, 1889: rediscovery and review of the Amazonian “ant-mantis”(Mantodea: Thespidae: Oligonicinae). Entomological Science, 17 (4), 400–408.

    https://doi.org/10.1111/ens.12072

    Bai, M., Beutel, R.G., Klass, K.D., Zhang, W.W., Yang, X.K. & Wipfler, B. (2016) †Alienoptera—a new insect order in the roach-mantodean twilight zone. Gondwana Research, 39, 317–326.

    https://doi.org/10.1016/j.gr.2016.02.002

    Bai, M., Beutel, R.G., Zhang, W.W., Wang, S., Hörnig, M., Gröhn, C., Yan, E., Yang, X.K. & Wipfler, B. (2018) A new Cretaceous insect with a unique cephalo-thoracic scissor device. Current Biology, 28 (3), 438443 [6 pp.].

    https://doi.org/10.1016/j.cub.2017.12.031

    Barden, P., Herhold, H.W. & Grimaldi, D.A. (2017) A new genus of hell ants from the Cretaceous (Hymenoptera: Formicidae: Haidomyrmecini) with a novel head structure. Systematic Entomology, 42 (4), 837–846.

    https://doi.org/10.1111/syen.12253

    Beckman, N. & Hurd, L.E. (2003) Pollen feeding and fitness in praying mantids: the vegetarian side of a tritrophic predator. Environmental Entomology, 32, 881–885.

    https://doi.org/10.1603/0046-225X-32.4.881

    Beutel, R.G., Friedrich, F., Ge, S.Q. & Yang, X.K. (2014) Insect Morphology and Phylogeny: A Textbook for Students of Entomology. De Gruyter, Berlin/Boston, 516 pp.

    https://doi.org/10.1515/9783110264043

    Beutel, R.G. & Gorb, S. (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. Journal of Zoological Systematics and Evolutionary Research, 39 (4), 177–207.

    https://doi.org/10.1046/j.1439-0469.2001.00155.x

    Beutel, R.G. & Gorb, S. (2006) A revised interpretation of the evolution of attachment structures in Hexapoda (Arthropoda), with special emphasis on Mantophasmatodea. Arthropod Systematics & Phylogeny, 64 (1), 3–25.

    https://doi.org/10.1016/j.anrea.2015.09.008

    Beutel, R.G., Prokop, J., Müller, P. & Pohl, H. 2019. †Bittacopsocus—a new bizarre genus of †Permopsocida (Insecta) from Burmese Cretaceous amber. Zootaxa, 4576 (2), 357–366.

    https://doi.org/10.11646/zootaxa.4576.2.9

    Bolton, B. (2003). Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute, 71, 370 pp.

    Borysenko, L.H. (2017) Description of a new genus of primitive ants from Canadian amber with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae). Insecta Mundi, 570, 1–57.

    https://doi.org/10.1101/051367

    Brackenbury, J. (1994) Wing folding and free-flight kinematics in Coleoptera (Insecta): a comparative study. Journal of Zoology, 232, 253–283.

    https://doi.org/10.1111/j.1469-7998.1994.tb01572.x

    Casey, T.M. (1992) Biophysical ecology and heat exchange in insects. American Zoologist, 32 (2), 225–237.

    https://doi.org/10.1093/icb/32.2.225

    Chapman, R.F. (1998) The Insects: Structure and Function. Cambridge University Press, Cambridge, 770 pp.

    Coiro, M., Doyle, J. A. & Hilton, J. (2019) How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytologist, 223, 83–99.

    https://doi.org/10.1111/nph.15708

    Danforth, B.N. (1989) The evolution of hymenopteran wings: the importance of size. Journal of Zoology, London, 218, 247–276.

    https://doi.org/10.1111/j.1469-7998.1989.tb02536.x

    Gotwald, W.H. (1969). Comparative Morphological Studies of the Ants: With Particular reference to the Mouthparts (Hymenoptera: Formicidae). Cornell University Agricultural Experiment Station, Ithaca, 150 pp.

    Grimaldi, D., Agosti, D. & Carpenter, J.M. (1997) New and rediscovered primitive ants (Hymenoptera: Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships. American Museum Novitates, 3208, 1–43.

    Grimaldi, D. (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden, 86, 373–406.

    https://doi.org/10.2307/2666181

    Farish, D. (1972) The evolutionary implications of qualitative variation in the grooming behaviour of the Hymenoptera (Insecta). Animal Behaviour, 20, 662–676.

    https://doi.org/10.1016/S0003-3472(72)80139-8

    Heinrich, B. (1974) Thermoregulation in endothermic insects. Science, 185 (4153), 747–756.

    https://doi.org/10.1126/science.185.4153.747

    Heath, J.E. & Heath, M.S. (1982) Energetics of locomotion in endothermic insects. Annual Review of Physiology, 44 (1), 133–143.

    https://doi.org/10.1146/annurev.ph.44.030182.001025

    Hespenheide, H.A. (1973) A novel mimicry complex: beetles and flies. Journal of Entomology Series A, General Entomology, 48 (1), 49–55.

    https://doi.org/10.1111/j.1365-3032.1973.tb00034.x

    Hinkelman, J. (2019) Earliest behavioral mimicry and possible food begging in a Mesozoic alienopterid pollinator. Biologia, 2019.

    https://doi.org/10.2478/s11756-019-00278-z

    Huang, D.Y., Bechly, G., Nel, P., Engel, M.S., Prokop, J., Azar, D., Cai, C.Y., Kamp, T. van de, Staniczek, A., Garrouste, R., Krogmann, L., Rolo, T.S., Baumbach, T., Ohlhoff, R., Shmakov, A.S., Bourgoin, T. & Nel, A. 2016. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Scientific Reports, 6 (23004), 1–9.

    https://doi.org/10.1038/srep23004

    Jackson, J.F. & Drummond, B.A. (1974) A Batesian ant-mimicry complex from the Mountain Pine Ridge of British Honduras, with an example of transformational mimicry. American Midland Naturalist, 91, 248–251.

    https://doi.org/10.2307/2424528

    Keller, R.A. (2011) A phylogenetic analysis of ant morphology (Hymenoptera: Formicidae) with special reference to the poneromorph subfamilies. Bulletin of the American Museum of Natural History, 355, 1–90.

    https://doi.org/10.1206/355.1

    Keller, R.A., Peeters, C. & Beldade, P. (2014). Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviors. eLife, 3, e01539 [19 pp.].

    https://doi.org/10.7554/eLife.02322

    Key, J.H.L. (1970) Phasmatodea. In: CSIRO (sponsor), The Insects of Australia, Melbourne University Press, Melbourne, pp. 348–359.

    Kirk, W. (1984) Pollen-feeding in thrips (Insecta: Thysanoptera). Journal of Zoology, 204, 107–117.

    https://doi.org/10.1111/j.1469-7998.1984.tb02364.x

    Kirk, W.D. (1985) Pollen-feeding and the host specificity and fecundity of flower thrips (Thysanoptera). Ecological Entomology, 10, 281–289.

    https://doi.org/10.1111/j.1365-2311.1985.tb00725.x

    Kočárek, P. (2019). Alienopterella stigmatica gen. et sp. nov.: the second known species and specimen of †Alienoptera extends knowledge about this Cretaceous order (Insecta: Polyneoptera). Journal of Systematic Palaeontology, 17, 491–499.

    https://doi.org/10.1080/14772019.2018.1440440

    Kočárek, P. (2018) The cephalo-thoracic apparatus of Caputoraptor elegans may have been used to squeeze prey. Current Biology, 28, R824–R825.

    https://doi.org/10.1016/j.cub.2018.06.046

    Krenn, H.W., Plant, J.D. & Szucsich, N.U. (2005) Mouthparts of flower-visiting insects. Arthropod Structure & Development, 34, 1–40.

    https://doi.org/10.1016/j.asd.2004.10.002

    Kukalová-Peck, J. & Lawrence, J.F. (1997) Evolution of the hind wing in Coleoptera. The Canadian Entomologist, 125, 181–258.

    https://doi.org/10.4039/Ent125181-2

    Labandeira, C.C. (1997) Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics, 28, 153–193.

    https://doi.org/10.1146/annurev.ecolsys.28.1.153

    Linsley, E.G. (1959) Mimetic form and coloration in the Cerambycidae (Coleoptera). Annals of the Entomological Society of America, 52, 125–131.

    https://doi.org/10.1093/aesa/52.2.125

    Liu, S.P., Richter, A., Stoessel, A. & Beutel, R.G. (2019) The mesosomal anatomy of Myrmecia nigrocincta workers and evolutionary transformations in Formicidae (Hymenoptera). Arthropod Systematics and Phylogeny, 77 (1), 1–19.

    https://doi.org/10.26049/ASP77-1-2019-01

    Mathew, A. (1935) Transformational deceptive resemblance as seen in the life history of a plant bug (Riptortus pedestris), and of a mantis (Evantissa pulchra). Journal of the Bombay Natural History Society, 37, 803–813.

    McIver, J. & Stonedahl, G. (1993) Myrmecomorphy: morphological and behavioral mimicry of ants. Annual Review of Entomology, 38, 351–377.

    https://doi.org/10.1146/annurev.en.38.010193.002031

    Morgan, E.D. & Mandava N.B. (2018) Handbook of Natural Pesticides. Volume VI: Insect Attractants and Repellents. CRC Press, Boca Raton, 264 pp.

    https://doi.org/10.1201/9780429487194

    Liu, Z.J., Huang, D.Y., Cai, C.Y. & Wang, X. (2018) The core eudicot boom registered in Myanmar amber. Scientific Reports, 8, 16765.

    https://doi.org/10.1038/s41598-018-35100-4

    Norberg, R.Å. (1972) The pterostigma of insect wings an inertial regulator of wing pitch. Journal of Comparative Physiology, 81, 9–22.

    https://doi.org/10.1007/BF00693547

    Parker, J. (2016) Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecological news, 22, 65–108.

    Perrichot, V., Nel, A., Néraudeau, D., Lacau, S., Guyot, T. (2008) New fossil ants in French cretaceous amber (Hymenoptera: Formicidae). Naturwissenschaften, 95 (2), 91–97.

    https://doi.org/10.1007/s00114-007-0302-7

    Perrichot, V., Wang, B. & Engel, M.S. (2016) Extreme morphogenesis and ecological specialization among Cretaceous basal ants. Current Biology, 26, 1468–1472.

    https://doi.org/10.1016/j.cub.2016.03.075

    Ren, D., Labandeira, C.C., Santiago-Blay, J.A., Rasnitsyn, A., Shih, C.K., Bashkuev, A., Logan, M.A.V., Hotton, C.L. & Dilcher, D. (2009) A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science, 326, 840–847.

    https://doi.org/10.1126/science.1178338

    Richter, A., Keller, R.A., Rosumek, F.B., Economo, E.P., Garcia, F.H. & Beutel, R.G. (2019) The cephalic anatomy of workers of the ant species Wasmannia affinis (Formicidae, Hymenoptera, Insecta) and its evolutionary implications. Arthropod Structure & Development, 49, 26–49.

    https://doi.org/10.1016/j.asd.2019.02.002

    Ruxton, G.D., Sherratt, T.N., Speed, M.P., Speed, M.P. & Speed, M. (2004) Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, 304 pp.

    https://doi.org/10.1093/acprof:oso/9780198528609.001.0001

    Sendi, H. & Azar, D. (2017) New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretaceous Research, 72, 13–17.

    https://doi.org/10.1016/j.cretres.2016.11.013

    Simmons, R.B. & Weller, S.J. (2002). What kind of signals do mimetic tiger moths send? A phylogenetic test of wasp mimicry systems (Lepidoptera: Arctiidae: Euchromiini). Proceedings of the Royal Society of London. Series B: Biological Sciences, 269 (1495), 983–99.

    https://doi.org/10.1098/rspb.2002.1970

    Šmídová, L. & Lei, X.J. (2017) The earliest amber-recorded type cockroach family was aposematic (Blattaria: Blattidae). Cretaceous Research, 72, 189–199.

    https://doi.org/10.1016/j.cretres.2017.01.008

    Vanin, S.A. & Guerra, T.J. (2012) A remarkable new species of flesh-fly mimicking weevil (Coleoptera: Curculionidae: Conoderinae) from Southeastern Brazil. Zootaxa, 3413 (1), 55–63.

    https://doi.org/10.11646/zootaxa.3413.1.5

    Vršanský, P., Bechly, G., Zhang, Q.Q., Jarzembowski, E.A., Mlynský, T., Šmídová, L., Barna, P., Kúdela, M., Aristov, D. & Bigalk, S. (2018) Batesian insect-insect mimicry-related explosive radiation of ancient alienopterid cockroaches. Biologia, 73, 987–1006.

    https://doi.org/10.2478/s11756-018-0117-3

    Weller, S.J., Simmons, R.B., Boada, R. & Conner, W.E. (2000) Abdominal modifications occurring in wasp mimics of the ctenuchine-euchromiine clade (Lepidoptera: Arctiidae). Annals of the Entomological Society of America, 93 (4), 920–928.

    https://doi.org/10.1603/0013-8746(2000)093[0920:AMOIWM]2.0.CO;2

    Wieland, F. (2013) The Phylogenetic System of Mantodea (Insecta: Dictyoptera). Universitätsverlag Göttingen, Göttingen, 222 pp.

    https://doi.org/10.17875/gup2013-711

    Wooton, R.J. (1992) Functional morphology of insect wings. Annual Review of Entomology, 37, 113–140.

    https://doi.org/10.1146/annurev.en.37.010192.000553

    Zhou, Y.L., Ślipiński, A., Ren, D. & Parker, J. (2019) A Mesozoic clown beetle myrmecophile (Coleoptera: Histeridae). eLife, 8, e44985 [14 pp.].

    https://doi.org/10.7554/eLife.44985