Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2021-06-30

Bryophytes as key indicators of ecosystem function and structure of northern peatlands

School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, U.S.A.
School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, U.S.A.
Bryophyte Bog community stability ecohydrology fen Hamatocaulis vernicosus moss peatland classification

Abstract

Bryophytes play a number of important roles in the functioning and structure of northern peatlands where they form the ground layer of fens and bogs. Sphagnum, dominant in bogs and poor fens, and brown mosses, dominant in rich fens, make up a large percentage of the organic matter that is stored as deep deposits of peat. In this paper we review the mechanisms of resistance to decay in these two moss groups. We then document a case study of a rich fen dominated mostly by Hamatocaulis vernicosus, that has remained stable for over 8000 calendar years. At this site, we use macrofossil abundances, including bryophyte habitat positions on water level and chemistry gradients, to infer past environmental conditions. Lastly, we provide a new ecohydrologic framework for wetland classes centered on bryophyte abundances across water level, nutrient, and salinity gradients and argue that bryophyte species are among the most significant indicators for classifying wetland site-types.

References

  1. Bauer, I.E., Gignac, L.D. & Vitt, D.H. (2003) Development of a peatland complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation. Canadian Journal of Botany 81: 833–847. https://doi.org/10.1139/b03-076
    BFNA (2007, 2014) Flora of North America Vol. 27 Bryophyta part 1, vol. 28 Bryophyta part 2. Oxford University Press, New York and Oxford.
    Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C. & ter Braak, C.J.F. (1990) Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society B, Biological Sciences 327: 263–278. https://doi.org/10.1098/rstb.1990.0062
    Bond-Lamberty, B., Wang, C. & Gower, S.T. (2004) Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biology 10: 473–487. https://doi.org/10.1111/j.1529-8817.2003.0742.x
    Bridgham, S.D., Pastor, J., Janssens, J.A., Chapin, C. & Malterer, T.J. (1996) Multiple limiting gradients in peatlands: A call for a new paradigm. Wetlands 16: 45–65. https://doi.org/10.1007/BF03160645
    Cajander, A.K. (1913) Studien über die Moore Finnlands. Acta Forestalia Fennica 2.3: 1–208. https://doi.org/10.14214/aff.7530
    Campbell, I.D., Campbell, C., Yu, Z., Vitt, D.H. & Apps. M.J. (2000) Millennial-scale rhythms in peatlands in the western interior of Canada and in the global carbon cycle. Quaternary Research 54: 155–158. https://doi.org/10.1006/qres.2000.2134
    Caners, R.T. & Lieffers, V.J. (2014) Divergent pathways of successional recovery for in situ oil sands exploration drilling pads on wooded, moderate-rich fens in Alberta, Canada Restoration Ecology 14: 657–667. https://doi.org/10.1111/rec.12123
    CCELC (1988) Canada Committee on Ecological (Biophysical) Land Classification, National Wetlands Working Group. Wetlands of Canada. Ecological Land Classification Series 24. Ottawa: Sustainable Development Branch, Canadian Wildlife Service, Conservation and Protection, Environment Canada.
    du Reitz, G.E. (1942) De svenska fjällens växtvärld. Ymer 62: 169–190.
    du Reitz, G.E. (1954) Die Mineralbodenwasserzeigergrenze als Grundlage einer natürlichen Zweigliederung der nord-und mitteleuropaischen Moore. Vegetatio 5–6: 571–585. https://doi.org/10.1007/BF00299611
    Ellis, C.J. & Rochefort, L. (2006) Long‐term sensitivity of a High Arctic wetland to Holocene climate change. Journal of Ecology  94: 441–454. https://doi.org/10.1111/j.1365-2745.2005.01085.x
    Esseen, P-A., Ehnström, B., Ericson, L. & Sjoberg, K. (1997) Boreal forests. Ecological Bulletins 46: 16–47.
    Fisher, T.G., Smith, D.G. & Andrews, J.T. (2002) Preboreal oscillation caused by a glacial Lake Agassiz flood. Quaternary Sciences Reviews 21: 873–878. https://doi.org/10.1016/S0277-3791(01)00148-2
    Fisher, T.G., Waterson, N., Lowell, T.V. & I. Hajdas, I (2009) Deglaciation ages and meltwater routing in the Fort McMurray region, northeastern Alberta and northwestern Saskatchewan, Canada. Quaternary Science Reviews 28: 1608–1624. https://doi.org/10.1016/j.quascirev.2009.02.003
    Freeman, C., Ostle, N. & Kang, H. (2001) An enzymatic ‘latch’ on a global carbon store. Nature 409: 149. https://doi.org/10.1038/35051650
    Halsey, L.A., Vitt, D.H. & Bauer, I.E. (1998) Peatland initiation during the Holocene in continental western Canada. Climatic Change 40: 315–342. https://doi.org/10.1023/A:1005425124749
    Gignac, L.D., Vitt, D.H., Zoltai, S.C. & Bayley, S.E. (1991a) Bryophyte response surfaces along climatic, chemical and physical gradients in peatlands of western Canada. Nova Hedwigia 53: 27–71.
    Gignac, L.D., Vitt, D.H. & Bayley, S.E. (1991b) Bryophyte response surfaces along ecological and climatic gradients. Vegetatio 93: 29–45.
    Glaser, P.H. & Janssens, J.A. (1986) Raised bogs in eastern North America: Transitions in landforms and gross stratigraphy. Canadian Journal of Botany 64: 395–415. https://doi.org/10.1139/b86-056
    Goffinet, B., Buck, W.R. & Shaw, A.J. (2008) Morphology, anatomy, and classification of the Bryophyta. In: Goffinet, B. & Shaw, A.J. (Eds.) Bryophyte Biology: Second Edition. Cambridge University Press, Cambridge, pp. 55–138.
    Gorham, E. & Janssens, J.A. (1992) Concepts of fen and bog reexamined in relation to bryophyte cover and the acidity of surface waters. Acta Societatis Botanicorum Poloniae 61: 7–20. https://doi.org/10.5586/asbp.1992.001
    Hedenäs, L. (2008) 61. Calliergonaceae. In: Flora of North America Editorial Committee (Org.) Flora of North America, Volume 28 Bryophyta, part 2. Oxford University Press, New York and Oxford, pp. 384–403.
    Hemond, H.F. (1980) Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecological Monographs 50: 507–526. https://doi.org/10.2307/1942655
    Janssens, J.A. (1983) A quantitative method for stratigraphical analyses of bryophytes in Holocene peat. Journal of Ecology 71: 189–196. https://doi.org/10.2307/2259971
    Janssens, J.A., Hansen, B.C.S., Glaser, P.H. & Whitlock, C. (1992) Development of a raised-bog complex. In: Wright, Jr., H.E., Coffin, B.A. & Aaseng, N.E. (Eds.) The Patterned Peatlands of Minnesota. University of Minnesota Press. Minneapolis, MN, pp. 189–221.
    Kubiw, H., Hickman, M. & Vitt, D.H. (1989) The developmental history of peatlands at Muskiki and Marguerite Lakes, Alberta. Canadian Journal of Botany 67: 3534–3544. https://doi.org/10.1139/b89-435
    Kuhry, P. & Vitt, D.H. (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77: 271–275. https://doi.org/10.2307/2265676
    Kuhry, P., Halsey, L.A., Bayley, S.E. & Vitt, D.H. (1992) Peatland development in relation to Holocene climatic change in Manitoba and Saskatchewan (Canada). Canadian Journal of Earth Sciences 29: 1070–1090. https://doi.org/10.1139/e92-086
    Kuhry, P., Nicholson, B.J., Gignac, L.D., Vitt, D.H. & Bayley, S.E. (1993) Development of Sphagnum dominated peatlands in boreal continental Canada. Canadian Journal of Botany 71: 10–22. https://doi.org/10.1139/b93-002
    Loisel, J., Yu, Z.-C., Beilman, D.W., Philip, C., Alm, J., Amesbury, M.J., Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L.R., Bunbury, J., Chambers, F.M., Charman, D.J., De Vleeschouwer, F., Fiałkiewicz-Kozieł, B., Finkelstein, S.A., Gałka, M., Garneau, M., Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M.C., Klein, E.S., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz, M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Mäkilä, M., Mallon, G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T.R., Nichols, J., O’Reilly, B., Oksanen, P., Packalen, M., Peteet, D., Richard, P.J.H., Robinson, S., Ronkainen, T., Rundgren, M., Sannel, A.B.K., Tarnocai, C., Thom, T., Tuittila, E.-S., Turetsky, M., Väliranta, M., van der Linden, M., van Geel, B., van Bellen, S., Vitt, D., Zhao, Y. & Zhou, W.-J. (2014) A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene 24: 1028–1042. https://doi.org/10.1177/0959683614538073
    Maltby, E. & Immirzi, P. (1993) Carbon dynamics in peatlands and other wetland soils, regional and global perspectives. Chemosphere 27: 999–1023. https://doi.org/10.1016/0045-6535(93)90065-D
    Moore, T.R. (1989) Growth and net production of Sphagnum at five fen sites, subarctic eastern Canada. Canadian Journal of Botany 67: 1203–1207. https://doi.org/10.1139/b89-156
    Nicholson, B.J. & Vitt, D.H. (1994) Wetland development at Elk Island National Park, Alberta, Canada. Journal of Paleolimnology 12: 19–34. https://doi.org/10.1007/BF00677987
    Pouliot, R., Rochefort, L. & Gauthier, G. (2009) Moss carpets constrain the fertilizing effects of herbivores on graminoid plants in arctic polygon fens. Botany 87: 1209–1222. https://doi.org/10.1139/B09-069
    Pouliot, R., Rochefort, L., Karofeld, E. & Mercier, C. (2011) Initiation of Sphagnum moss hummocks in bogs and the presence of vascular plants: Is there a link? Acta Oecologica 37: 346–354. https://doi.org/10.1016/j.actao.2011.04.001
    Reimer, P.J., Ballie, M.G.L., Bard, E., Bayless, A., Beck, J.W., Blackwell P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J. & Weyhenmeyer, C.E. (2009) IntCal09 and marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 1111–1150. https://doi.org/10.1017/S0033822200034202
    Richards, P.W. (1984) Chapter 21. The ecology of tropical forest bryophytes. In: Schuster R.M. (Ed.) New Manual of Bryology. Hattori Botanical Laboratory, Nichinan, Japan, pp. 1231–1270.
    Sjörs, H. (1950) Regional studies in north Swedish mire vegetation Botanische Notiser 1950: 174–221.
    Sjörs, H. (1952) On the relations between vegetation and electrolytes in north Swedish mire waters. Oikos 2.2: 242–258. https://doi.org/10.2307/3564795
    Sjörs, H. (1983) Mires of Sweden. In: A.J.P. Gore (Ed.) Ecosystems of the World 4B. Elsevier Scientific Publishing Company, Amsterdam, Netherlands, pp. 69–94.
    Startsev, N., Lieffers, V.J. & Landhausser, S.M. (2008) Effects of leaf litter on the growth of boreal feather mosses: Implication for forest floor development. Journal of Vegetation Science 19: 253–260. https://doi.org/10.3170/2008-8-18367
    Vitt, D.H. (1994) An overview of factors that influence the development of Canadian peatlands. Memoirs of the Entomological Society of Canada 169: 7–20. https://doi.org/10.4039/entm126169007-1
    Vitt, D.H. (2006) Functional characteristics and indicators of boreal peatlands. In: Wieder, R.K. & Vitt, D.H. (Eds.) Boreal Peatland Ecosystems. Springer-Verlag, Berlin-Heidelburg-New York, pp. 9–24. https://doi.org/10.1007/978-3-540-31913-9_2
    Vitt, D.H. (2014) A key and review of bryophytes common in North American peatlands. Evansia 31: 121–156. https://doi.org/10.1639/079.031.0402
    Vitt, D.H. & Chee, W.-L. (1990) The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89: 87–106. https://doi.org/10.1007/BF00032163
    Vitt, D.H. & Lüth, M. (2017) A Guide to the Mosses and Liverworts of Alberta Peatlands. Digital publication available on Research Gate.
    Vitt, D.H., Halsey, L.A. Bray, J. & Kinser, A. (2003) Patterns of bryophyte richness in a complex boreal landscape: Identifying key habitats at McClelland Lake wetland. The Bryologist 106: 372–382. https://doi.org/10.1639/03
    Vitt, D.H., House, M. Kitchen, S. & Wieder R.K. (2020) A protocol for monitoring plant responses to changing nitrogen deposition regimes in Alberta bogs. Environmental Monitoring and Assessment (accepted Sept. 2020). https://doi.org/10.1007/s10661-020-08645-z
    Weber, C. (1911) Das Moore. Hannoversche Geschichtsbericht 14: 255–270.
    Wheeler, B.D. & Proctor, M.C.F. (2002) Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology 88: 187–203. https://doi.org/10.1046/j.1365-2745.2000.00455.x
    Wieder R.K., Vitt, D.H. & Benscoter, B. (2006) Peatlands and the boreal forest. In: Wieder, R.K. & Vitt, D.H. (Eds.) Boreal Peatland Ecosystems. Springer-Verlag, Berlin-Heidelburg-New York, pp. 1–8. https://doi.org/10.1007/978-3-540-31913-9_1
    Williams, C.J., Yavitt, J.B., Wieder, R.K. & Cleavitt, N.L. (1998) Cupric oxide oxidation products of northern peat and peat forming plants. Canadian Journal of Botany 76: 51–62. https://doi.org/10.1139/b97-150
    Xu, J., Morris, P.J., Liu, J. & Holden, J. (2018) PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 160: 134–140. https://doi.org/10.1016/j.catena.2017.09.010
    Yu, Z., Campbell, I.D., Campbell, C., Vitt, D.H., Bond, G.C. & Apps, M.J. (2003) Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. The Holocene 13: 801–808. https://doi.org/10.1191/0959683603hl667ft
    Yu, Z., Loisel, J. Brosseau, D.P., Beilman, D.W. & Hunt, S.J. (2010) Global peatland dynamics since the last Glacial Maximum. Geophysical Research Letters 37: L13402. https://doi.org/10.1029/2010GL043584
    Yu, Z., Vitt, D.H. & Wieder, R.K. (2014) Continental fens in western Canada as effective carbon sinks during the Holocene. The Holocene 24: 1090–1104. https://doi.org/10.1177/0959683614538075