Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2021-06-30

500 million years of charted territory: functional ecological traits in bryophytes

Dept. of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
Department of Biology, Middlebury College, Middlebury, VT, 05753, USA
bryophyte Ecosystem processes effect traits land plants liverwort moss poikilohydry response traits

Abstract

Since the late Cambrian era, bryophytes have been shaping terrestrial ecosystems through unique and diverse suites of anatomical, physiological, and morphological traits. In this review we highlight historical and recent work in bryophyte functional ecology, with an emphasis on knowledge gaps and opportunities for future work. While we cannot always avoid the temptation to contrast with tracheophyte (especially angiosperm) studies, our aim is to de-center that perspective in favor of a more universal understanding of functional land plant ecology. We therefore center our description on three core aspects of bryophytes that are poorly represented in tracheophyte studies: (I) dynamic water content (including poikilohydry and desiccation tolerance), (II) multiple scales of interaction with environment, and (III) reproduction and life history. We also highlight the diverse and wide-ranging influence bryophytes have on ecosystem processes, including primary productivity, nutrient cycling, hydrology, and ecological interactions with other species. Furthermore, while the study of bryophyte functional traits has rapidly grown in the past decade, important gaps in phylogenetic and geographic coverage persist and constrain the development of a more universal land plant functional ecology theory.

References

  1. Ah-Peng, C., Cardoso, A.W., Flores, O., West, A., Wilding, N., Strasberg, D. & Hedderson, T.A.J. (2017) The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. Journal of Hydrology, 548: 665–673. https://doi.org/10.1016/j.jhydrol.2017.03.043
    Arróniz-Crespo, M., Pérez-Ortega, S., Ríos, A.D. los, Green, T.G.A., Ochoa-Hueso, R., Casermeiro, M.Á., de la Cruz, M.T., Pintado, A., Palacios, D., Rozzi, R., Tysklind, N. & Sancho, L.G. (2014) Bryophyte-Cyanobacteria Associations during Primary Succession in Recently Deglaciated Areas of Tierra del Fuego (Chile). PLOS ONE 9: e96081. https://doi.org/10.1371/journal.pone.0096081
    Atala, C. & Alfaro, J.F. (2012) Vascular architecture of the dendroid antipodean moss Dendroligotrichum dendroides (Brid. ex Hedw.) Broth. (Polytrichaceae). Journal of Bryology 34: 277–280. https://doi.org/10.1179/1743282012Y.0000000032
    Barthlott, W., Fischer, E., Frahm, J.-P. & Seine, R. (2000) First Experimental Evidence for Zoophagy in the Hepatic Colura. Plant Biology 2: 93–97. https://doi.org/10.1055/s-2000-9150
    Bates, J.W. & Farmer, A.M. (1992) Bryophytes and lichens in a changing environment. Clarendon Press.
    Bell, D., Lin, Q., Gerelle, W.K., Joya, S., Chang, Y., Taylor, Z.N., Rothfels, C.J., Larsson, A., Villarreal, J.C., Li, F.-W., Pokorny, L., Szövényi, P., Crandall‐Stotler, B., DeGironimo, L., Floyd, S.K., Beerling, D.J., Deyholos, M.K., von Konrat, M., Ellis, S., Shaw, A.J., Chen, T., Wong, G.K.-S., Stevenson, D.W., Palmer, J.D. & Graham, S.W. (2020) Organellomic data sets confirm a cryptic consensus on (unrooted) land-plant relationships and provide new insights into bryophyte molecular evolution. American Journal of Botany 107: 91–115. https://doi.org/10.1002/ajb2.1397
    Berdugo, M.B. & Dovciak, M. (2019) Bryophytes in fir waves: Forest canopy indicator species and functional diversity decline in canopy gaps. Journal of Vegetation Science 30: 235–246. https://doi.org/10.1111/jvs.12718
    Bisang, I., Ehrlén, J. & Hedenäs, L. (2020) Sex expression and genotypic sex ratio vary with region and environment in the wetland moss Drepanocladus lycopodioides. Botanical Journal of the Linnean Society 192: 421–434. https://doi.org/10.1093/botlinnean/boz063
    Blackstock, T.H. (2018) Apparent increase in fertility of Lunularia cruciata (L.) Lind. (Marchantiophyta) in Britain associated with climate change. Journal of Bryology 40: 377–383. https://doi.org/10.1080/03736687.2018.1514175
    Bowen, E.J. (1931) Water Conduction in Polytrichum commune. Annals of Botany 45: 175–200. https://doi.org/10.1093/oxfordjournals.aob.a090265
    Brodribb, T.J., Carriquí, M., Delzon, S., McAdam, S.A.M. & Holbrook, N.M. (2020) Advanced vascular function discovered in a widespread moss. Nature Plants 6: 273–279. https://doi.org/10.1038/s41477-020-0602-x
    Budke, J.M. (2019) The moss calyptra: A maternal structure influencing offspring development. The Bryologist 122: 471–491. https://doi.org/10.1639/0007-2745-122.3.471
    Budke, J.M. & Goffinet, B. (2016) Comparative Cuticle Development Reveals Taller Sporophytes Are Covered by Thicker Calyptra Cuticles in Mosses. Frontiers in Plant Science 7: 832. https://doi.org/10.3389/fpls.2016.00832
    Carriquí, M., Roig‐Oliver, M., Brodribb, T.J., Coopman, R., Gill, W., Mark, K., Niinemets, Ü., Perera‐Castro, A.V., Ribas‐Carbó, M., Sack, L., Tosens, T., Waite, M. & Flexas, J. (2019) Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytologist 222: 1256–1270. https://doi.org/10.1111/nph.15675
    Carvajal Janke, N. & Coe, K.K. (2021) Evidence for a fungal loop in shrublands. Journal of Ecology. [Online early] https://doi.org/10.1111/1365-2745.13610
    Castetter, R.C., McLetchie, D.N., Eppley, S.M. & Stark, L.R. (2019) Sex ratio and sex expression in an urban population of the silver moss, Bryum argenteum Hedw. Journal of Bryology: 1–9. https://doi.org/10.1080/03736687.2019.1610617
    Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. (2009) The merging of community ecology and phylogenetic biology. Ecology Letters 12: 693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x
    Chang, C., Shih-Chieh, Lai, I.-L. & Wu, J.-T. (2002) Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research 64: 159–167. https://doi.org/10.1016/S0169-8095(02)00088-1
    Coe, K.K. & Sparks, J.P. (2014) Physiology-based prognostic modeling of the influence of changes in precipitation on a keystone dryland plant species. Oecologia 176 (4): 933–942. https://doi.org/10.1007/s00442-014-3067-7
    Coe, K.K., Howard, N.B., Slate, M.L., Bowker, M.A., Mishler, B.D., Butler, R., Greenwood, J. & Stark, L.R. (2019) Morphological and physiological traits in relation to carbon balance in a diverse clade of dryland mosses. Plant, Cell & Environment 42: 3140–3151. https://doi.org/10.1111/pce.13613
    Coe, K.K., Greenwood, J.L., Slate, M.L., Clark, T.A., Brinda, J.C., Fisher, K.M., Mishler, B.D., Bowker, M.A., Oliver, M.J., Ebrahimi, S. & Stark, L.R. (2021) Strategies of desiccation tolerance vary across life phases in the moss Syntrichia caninervis. American Journal of Botany 108: 249–262. https://doi.org/10.1002/ajb2.1571
    Cornelissen, J.H.C., Lang, S.I., Soudzilovskaia, N.A. & During, H.J. (2007) Comparative Cryptogam Ecology: A Review of Bryophyte and Lichen Traits that Drive Biogeochemistry. Annals of Botany 99: 987–1001. https://doi.org/10.1093/aob/mcm030
    Coudert, Y., Bell, N.E., Edelin, C. & Harrison, C.J. (2017) Multiple innovations underpinned branching form diversification in mosses. New Phytologist 215: 840–850. https://doi.org/10.1111/nph.14553
    Cruz de Carvalho, R., Maurício, A., Pereira, M.F., Marques da Silva, J. & Branquinho, C. (2019) All for One: The Role of Colony Morphology in Bryophyte Desiccation Tolerance. Frontiers in Plant Science 10: 1360. https://doi.org/10.3389/fpls.2019.01360
    Davy de Virville, Ad. (1927) L’action du milieu sur les mousses. Revue de Botanique 462–471: 364–383, 449–457, 515–522, 560–586, 638–662, 711–726, 767–783, 30–44, 95–110, 156–173.
    Davy de Virville, Ad. & Douin, R. (1921) Sur les modifications de la forme et la structure des hépatiques maintenues submergées sous l’eau. Comptes rendus hebdomadaires des séances de l’Académie des sciences 8: 1306–1308.
    Deane-Coe, K.K. & Sparks, J.P. (2015) Cyanobacteria associations in temperate forest bryophytes revealed by δ15N analysis. The Journal of the Torrey Botanical Society 143 (1): 50–57. https://doi.org/10.3159/TORREY-D-15-00013
    DeLuca, T.H., Zackrisson, O., Nilsson, M.-C. & Sellstedt, A. (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419: 917–920. https://doi.org/10.1038/nature01051
    Dilks, T.J.K. & Proctor, M.C.F. (1979) Photosynthesis, respiration and water content in bryophytes. New Phytologist 82 (1): 97–114. https://doi.org/10.1111/j.1469-8137.1979.tb07564.x
    Dong, S., Zhao, C., Zhang, S., Zhang, L., Wu, H., Liu, H., Zhu, R.-L., Jia, Y., Goffinet, B. & Liu, Y. (2019) Mitochondrial genomes of the early land plant lineage liverworts (Marchantiophyta): conserved genome structure, and ongoing low frequency recombination. BMC Genomics 20: 953. https://doi.org/10.1186/s12864-019-6365-y
    Egerton, F.N. (2013) History of Ecological Sciences, Part 48: Formalizing Plant Ecology, about 1870 to mid-1920s. Bulletin of the Ecological Society of America 94: 341–378. https://doi.org/10.1890/0012-9623-94.4.341
    Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M.O. & Pöschl, U. (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5: 459–462. https://doi.org/10.1038/ngeo1486
    Eldridge, D.J., Reed, S., Travers, S.K., Bowker, M.A., Maestre, F.T., Ding, J., Havrilla, C., Rodriguez‐Caballero, E., Barger, N., Weber, B., Antoninka, A., Belnap, J., Chaudhary, B., Faist, A., Ferrenberg, S., Huber‐Sannwald, E., Issa, O.M. & Zhao, Y. (2020) The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Global Change Biology 26: 6003–6014. https://doi.org/10.1111/gcb.15232
    Elumeeva, T.G., Soudzilovskaia, N.A., During, H.J. & Cornelissen, J.H.C. (2011) The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species: Factors affecting bryophyte water balance. Journal of Vegetation Science 22: 152–164. https://doi.org/10.1111/j.1654-1103.2010.01237.x
    Estébanez, B., Medina, N.G., Caparrós, R., Monforte, L., Del‐Castillo‐Alonso, M.-Á., Martínez‐Abaigar, J. & Núñez‐Olivera, E. (2018) Spores potentially dispersed to longer distances are more tolerant to ultraviolet radiation: A case study in the moss genus Orthotrichum. American Journal of Botany 105: 996–1008. https://doi.org/10.1002/ajb2.1118
    Fan, X.-Y., Liu, W.-Y., Song, L., Liu, S., Shi, X.-M. & Yuan, G.-D. (2020) A combination of morphological and photosynthetic functional traits maintains the vertical distribution of bryophytes in a subtropical cloud forest. American Journal of Botany 107: 761–772. https://doi.org/10.1002/ajb2.1474
    Fernández-Martínez, M., Berloso, F., Corbera, J., Garcia-Porta, J., Sayol, F., Preece, C. & Sabater, F. (2019) Towards a moss sclerophylly continuum: Evolutionary history, water chemistry and climate control traits of hygrophytic mosses. Functional Ecology 33: 2273–2289. https://doi.org/10.1111/1365-2435.13443
    Field, K.J. & Pressel S. (2018) Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist 220: 996–1011. https://doi.org/10.1111/nph.15158
    Forman, R.T.T. (1964) Growth under Controlled Conditions to Explain the Hierarchical Distributions of a Moss, Tetraphis pellucida. Ecological Monographs 34: 1–25. https://doi.org/10.2307/1948461
    Frey, W. & Kürschner, H. (2011) Asexual reproduction, habitat colonization and habitat maintenance in bryophytes. Flora 206 (3): 173–184. https://doi.org/10.1016/j.flora.2010.04.020
    Gauslaa, Y. & Coxson, D. (2011) Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 89: 787–798. https://doi.org/10.1139/b11-070
    Goulden, M.L. & Crill, P.M. (1997) Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiology 17: 537–542. https://doi.org/10.1093/treephys/17.8-9.537
    Granath, G., Strengbom, J., Breeuwer, A., Heijmans, M.M.P.D., Berendse, F. & Rydin, H. (2009) Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia 159: 705–715. https://doi.org/10.1007/s00442-008-1261-1
    Granath, G., Rydin, H., Baltzer, J.L., Bengtsson, F., Boncek, N., Bragazza, L., Bu, Z.-J., Caporn, S.J.M., Dorrepaal, E., Galanina, O., Gałka, M., Ganeva, A., Gillikin, D.P., Goia, I., Goncharova, N., Hájek, M., Haraguchi, A., Harris, L.I., Humphreys, E., Jiroušek, M., Kajukało, K., Karofeld, E., Koronatova, N.G., Kosykh, N.P., Lamentowicz, M., Lapshina, E., Limpens, J., Linkosalmi, M., Ma, J.-Z., Mauritz, M., Munir, T.M., Natali, S.M., Natcheva, R., Noskova, M., Payne, R.J., Pilkington, K., Robinson, S., Robroek, B.J.M., Rochefort, L., Singer, D., Stenøien, H.K., Tuittila, E.-S., Vellak, K., Verheyden, A., Waddington, J.M. & Rice, S.K. (2018) Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges. Biogeosciences 15 (16): 5189–5202. https://doi.org/10.5194/bg-15-5189-2018
    Greenwood, J.L. & Stark, L.R. (2014) The rate of drying determines the extent of desiccation tolerance in Physcomitrella patens. Functional Plant Biology 41 (5): 460–467. https://doi.org/10.1071/FP13257
    Haberlandt, G. (1886) Beiträge zur Anatomie und Physiologie des Laubmoose. Jahrbücher für wissenschaftliche Botanik 17: 359–492.
    Haig, D. (2013) Filial mistletoes: the functional morphology of moss sporophytes. Annals of Botany 111: 337–345. https://doi.org/10.1093/aob/mcs295
    Haines, W.P. & Renwick, J.A.A. (2009) Bryophytes as food: comparative consumption and utilization of mosses by a generalist insect herbivore. Entomologia experimentalis et applicata 133 (3): 296–306. https://doi.org/10.1111/j.1570-7458.2009.00929.x
    Hájek, T. & Beckett, R.P. (2008) Effect of water content components on desiccation and recovery in Sphagnum mosses. Annals of botany 101: 165–173. https://doi.org/10.1093/aob/mcm287
    Hanson, D.T. & Rice S.K. (Eds.) (2014) Photosynthesis in Bryophytes and Early Land Plants. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5
    Hébant, C. (1968) L’évolution des tissus conducteurs chez les Mousses s.str. (Bryopsida). Cryptogamie, Bryologie, Lichénologie 36: 111–113.
    Hébant, C. (1973) Diversity of structure in the water-conducting elements in liverworts and mosses. Journal of the Hattori Botanical Laboratory 37: 229–234.
    Hébant, C. (1977) The Conducting Tissues of Bryophytes. J. Cramer. Vaduz.
    Hedderson, T.A. & Longton R.E. (1995) Patterns of life history variation in the Funariales, Polytrichales and Pottiales. Journal of Bryology 18: 639–675. https://doi.org/10.1179/jbr.1995.18.4.639
    Hedderson, T.A. & Longton R.E. (1996) Life History Variation in Mosses: Water Relations, Size and Phylogeny. Oikos 77: 31–43. https://doi.org/10.2307/3545582
    Hedderson, T.A. & Longton, R.E. (2008) Local adaptation in moss life histories: population-level variation and a reciprocal transplant experiment. Journal of Bryology 30: 1–11. https://doi.org/10.1179/174328208X282175
    Hedenäs, L. (2002) Important Complexes of Intercorrelated Character States in Pleurocarpous Mosses. Lindbergia 27: 104–121. https://doi.org/10.1639/0007-2745(2001)104[0072:EFPACS]2.0.CO;2
    Hedenäs, L. (2012) Morphological and anatomical features associated with epiphytism among the pleurocarpous mosses—one basis for further research on adaptations and their evolution. Journal of Bryology 34: 79–100. https://doi.org/10.1179/1743282011Y.0000000049
    Henriques, D.S.G., Ah-Peng, C. & Gabriel, R. (2017) Structure and Applications of BRYOTRAIT-AZO, a Trait Database for Azorean Bryophytes. Cryptogamie, Bryologie 38: 137–152. https://doi.org/10.7872/cryb/v38.iss2.2017.137
    Hess, S., Frahm, J.-P. & Theisen, I. (2005) Evidence of Zoophagy in a Second Liverwort Species, Pleurozia purpurea. The Bryologist 108 (2): 212–218. https://doi.org/10.1639/6
    Jean, M., Holland‐Moritz, H., Melvin, A.M., Johnstone, J.F. & Mack, M.C. (2020) Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. New Phytologist 5: 1335–1349. https://doi.org/10.1111/nph.16611
    Johansson, V., Lönnell, N., Sundberg, S. & Hylander, K. (2014) Release thresholds for moss spores: the importance of turbulence and sporophyte length. Journal of Ecology 102: 721–729. https://doi.org/10.1111/1365-2745.12245
    Kirbis, A., Waller, M., Ricca, M., Bont, Z., Neubauer, A., Goffinet, B. & Szövényi, P. (2020) Transcriptional Landscapes of Divergent Sporophyte Development in Two Mosses, Physcomitrium (Physcomitrella) patens and Funaria hygrometrica. Frontiers in Plant Science 11: 747. https://doi.org/10.3389/fpls.2020.00747
    Kolari, P., Pumpanen, J., Kulmala, L., Ilvesniemi, H., Nikinmaa, E., Grönholm, T. & Hari, P. (2006) Forest floor vegetation plays an important role in photosynthetic production of boreal forests. Forest Ecology and Management 221: 241–248. https://doi.org/10.1016/j.foreco.2005.10.021
    Kostka, J.E., Weston, D.J., Glass, J.B., Lilleskov, E.A., Shaw, A.J. & Turetsky, M.R. (2016) The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist 211: 57–64. https://doi.org/10.1111/nph.13993
    Laaka-Lindberg, S., Korpelainen, H. & Pohjamo, M. (2003) Dispersal of asexual propagules in bryophytes. Journal of the Hattori Botanical Laboratory 93: 319–330.
    Laenen, B., Shaw, B., Schneider, H., Goffinet, B., Paradis, E., Désamoré, A., Heinrichs, J., Villarreal, J.C., Gradstein, S.R., McDaniel, S.F., Long, D.G., Forrest, L.L., Hollingsworth, M.L., Crandall-Stotler, B., Davis, E.C., Engel, J., Von Konrat, M., Cooper, E.D., Patiño, J., Cox, C.J., Vanderpoorten, A. & Shaw, A.J. (2014) Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications 5: 5134. https://doi.org/10.1038/ncomms6134
    Lavorel, S. & Garnier, E. (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
    Lenton, T.M., Dahl, T.W., Daines, S.J., Mills, B.J.W., Ozaki, K., Saltzman, M.R. & Porada, P. (2016) Earliest land plants created modern levels of atmospheric oxygen. Proceedings of the National Academy of Sciences 113: 9704–9709. https://doi.org/10.1073/pnas.1604787113
    Li, F.-W., Nishiyama, T., Waller, M., Frangedakis, E., Keller, J., Li, Z., Fernandez-Pozo, N., Barker, M.S., Bennett, T., Blázquez, M.A, Cheng, S.-F., Cuming, A.C., de Vries, J., de Vries, S., Delaux, P.-M., Diop, I.S., Harrison, C.J., Hauser, D., Hernández-García, J., Kirbis, A., Meeks, J.C., Monte, I., Mutte, S.K., Neubauer, A., Quandt, D., Robison, T., Shimamura, M., Rensing, S.A., Villarreal, J.C., Weijers, D., Wicke, S., Wong, G.K.-S., Sakakibara, K. & Szövényi, P. (2020) Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants 6: 259–272. https://doi.org/10.1038/s41477-020-0618-2
    Ligrone, R., Duckett, J.G. & Renzaglia, K.S. (2000) Conducting tissues and phyletic relationships of bryophytes. Philosophical Transactions of the Royal Society B: Biological Sciences 355: 795–813. https://doi.org/10.1098/rstb.2000.0616
    Ligrone, R., Duckett, J.G. & Renzaglia, K.S. (2012) Major transitions in the evolution of early land plants: a bryological perspective. Annals of Botany 109: 851–871. https://doi.org/10.1093/aob/mcs017
    Lindo, Z. & Gonzalez, A. (2010) The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13: 612–627. https://doi.org/10.1007/s10021-010-9336-3
    Löbel, S., Mair, L., Lönnell, N., Schröder, B. & Snäll, T. (2018) Biological traits explain bryophyte species distributions and responses to forest fragmentation and climatic variation. Journal of Ecology 106: 1700–1713. https://doi.org/10.1111/1365-2745.12930
    Löbel, S. & Rydin, H. (2010) Trade-offs and habitat constraints in the establishment of epiphytic bryophytes: Trade-offs and habitat constraints. Functional Ecology 24: 887–897. https://doi.org/10.1111/j.1365-2435.2010.01705.x
    Longton, R.E. (1988). Biology of polar bryophytes and lichens. CUP Archive. https://doi.org/10.1017/CBO9780511565212
    Maciel-Silva, A.S., Coelho, M.L.P. & Pôrto, K.C. (2013) Reproductive traits in the tropical moss Octoblepharum albidum Hedw. differ between rainforest and coastal sites. Journal of Bryology 35: 206–215. https://doi.org/10.1179/1743282013Y.0000000059
    Mägdefrau, C. (1935) Untersuchungen über die Wasserversorgung des Gametophyten und Sporophyten des Laubmoose. Zeitschrift fúr Botanik 29: 337–375.
    Mallen-Cooper, M. & Cornwell, W.K. (2020) A systematic review of transplant experiments in lichens and bryophytes. The Bryologist 123: 444–454. https://doi.org/10.1639/0007-2745-123.3.443
    Manyanga, P., Söderström, L. & Hedderson T.A. (2011) Co-variation of life history characters in the family Lophoziaceae: a multivariate analysis. The Bryologist 114: 583–594. https://doi.org/10.1639/0007-2745-114.3.583
    Marks, R.A., Burton, J.F. & McLetchie, D.N. (2016) Sex differences and plasticity in dehydration tolerance: insight from a tropical liverwort. Annals of Botany 118: 347–356. https://doi.org/10.1093/aob/mcw102
    Marks, R.A., Pike, B.D. & McLetchie, D.N. (2019a) Water stress tolerance tracks environmental exposure and exhibits a fluctuating sexual dimorphism in a tropical liverwort. Oecologia 191: 791–802. https://doi.org/10.1007/s00442-019-04538-2
    Marks, R.A., Smith, J.J., Cronk, Q., Grassa, C.J. & McLetchie, D.N. (2019b) Genome of the tropical plant Marchantia inflexa : implications for sex chromosome evolution and dehydration tolerance. Scientific Reports 9: 8722. https://doi.org/10.1038/s41598-019-45039-9
    Martin, K. & Hik, D. (1992) Willow Ptarmigan Chicks Consume Moss Sporophyte Capsules (Polluelos de Lagopus lagopus Consumen Cápsulas de Esporofitos de Musgos). Journal of Field Ornithology 63: 355–358.
    Mazziotta, A., Granath, G., Rydin, H., Bengtsson, F. & Norberg, J. (2019) Scaling functional traits to ecosystem processes: Towards a mechanistic understanding in peat mosses. Journal of Ecology 107: 843–859. https://doi.org/10.1111/1365-2745.13110
    McDaniel, S.F. (2018) The Genetic Basis of Natural Variation in Bryophyte Model Systems. Annual Plant Reviews Online 36: 16–41. https://doi.org/10.1002/9781119312994.apr0385
    Mishler, B.D. (2001) The biology of bryophytes-bryophytes aren’t just small tracheophytes. American Journal of Botany 88 (11): 2129–2131. https://doi.org/10.2307/3558438
    Moore, J.D., Kollar, L.M. & McLetchie, D.N. (2016) Does selection for gamete dispersal and capture lead to a sex difference in clump water-holding capacity? American Journal of Botany 103: 1449–1457. https://doi.org/10.3732/ajb.1600096
    Moore, P.A., Smolarz, A.G., Markle, C.E. & Waddington, J.M. (2019) Hydrological and Thermal Properties of Moss and Lichen Species on Rock Barrens: Implications for Turtle Nesting Habitat. Ecohydrology: e2057. https://doi.org/10.1002/eco.2057
    Mueller-Dombois, D. & Boehmer, H.J. (2013) Origin of the Hawaiian rainforest and its transition states in long-term primary succession. Biogeosciences 10: 5171–5182. https://doi.org/10.5194/bg-10-5171-2013
    Nelsen, M.P., Lücking, R., Boyce, C.K., Lumbsch, H.T. & Ree, R.H. (2020) No support for the emergence of lichens prior to the evolution of vascular plants. Geobiology 18: 3–13. https://doi.org/10.1111/gbi.12369
    Niinemets, Ü. &. Tobias M. (2019) Canopy leaf area index at its higher end: dissection of structural controls from leaf to canopy scales in bryophytes. New Phytologist 223: 118–133. https://doi.org/10.1111/nph.15767
    Niklas, K.J. & Spatz, H.C. (2012) Plant physics. University of Chicago Press. https://doi.org/10.7208/chicago/9780226586342.001.0001
    Oke, T. & Turetsky, M.R. (2020) Spatial pattern of intraspecific trait variability in Sphagnum fuscum. Botany 98: 717–723. https://doi.org/10.1139/cjb-2020-0077
    Oliver, M.J., Velten, J. & Wood, A.J. (2000) Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecology 151: 73–84. https://doi.org/10.1023/A:1026598724487
    Oliver, M.J., Murdock, A.G., Mishler, B.D., Kuehl, J.V., Boore, J.L., Mandoli, D.F., DE Everett, K., Wolf, P.G., Duffy, A.M. & Karol, K.G. (2010) Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes. BMC genomics 11: 143. https://doi.org/10.1186/1471-2164-11-143
    Ortiz-Ramírez, C., Hernandez-Coronado, M., Thamm, A., Catarino, B., Wang, M., Dolan, L., Feijó, J.A. & Becker, J.D. (2016) A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants. Molecular Plant 9: 205–220. https://doi.org/10.1016/j.molp.2015.12.002
    Pan, Z., Pitt, W.G., Zhang, Y., Wu, N., Tao, Y. & Truscott, T.T. (2016) The upside-down water collection system of Syntrichia caninervis. Nature Plants 2: 1–5. https://doi.org/10.1038/nplants.2016.76
    Patiño, J., Bisang, I., Hedenäs, L., Dirkse, G., Bjarnason, Á.H., Ah-Peng, C. & Vanderpoorten, A. (2013) Baker’s law and the island syndromes in bryophytes. Journal of Ecology 101: 1245–1255. https://doi.org/10.1111/1365-2745.12136
    Pederson, E.R.A., Warshan, D. & Rasmussen, U. (2019) Genome Sequencing of Pleurozium schreberi: The Assembled and Annotated Draft Genome of a Pleurocarpous Feather Moss. G3: Genes, Genomes, Genetics 9: 2791–2797. https://doi.org/10.1534/g3.119.400279
    Pereira, M.R., Dambros, C. de S. & Zartman, C.E. (2013) Will the real Syrrhopodon leprieurii please stand up? The influence of topography and distance on phenotypic variation in a widespread Neotropical moss. The Bryologist 116: 58–64. https://doi.org/10.1639/0007-2745-116.1.058
    Perera-Castro, A.V., Waterman, M.J., Turnbull, J.D., Ashcroft, M.B., McKinley, E., Watling, J.R., Bramley-Alves, J., Casanova-Katny, A., Zuniga, G., Flexas, J. & Robinson, S.A. (2020) It Is Hot in the Sun: Antarctic Mosses Have High Temperature Optima for Photosynthesis Despite Cold Climate. Frontiers in Plant Science 11: 1178. https://doi.org/10.3389/fpls.2020.01178
    Peters, K., Treutler, H., Döll, S., Kindt, A.S., Hankemeier, T. & Neumann, S. (2019) Chemical diversity and classification of secondary metabolites in nine bryophyte species. Metabolites 9 (10): 222. https://doi.org/10.3390/metabo9100222
    Piatkowski, B.T. & Shaw, A.J. (2019) Functional trait evolution in Sphagnum peat mosses and its relationship to niche construction. New Phytologist 223: 939–949. https://doi.org/10.1111/nph.15825
    Pohjamo, M., Laaka-Lindberg, S., Ovaskainen, O. & Korpelainen, H. (2006) Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evolutionary Ecology 20: 415–430. https://doi.org/10.1007/s10682-006-0011-2
    Porada, P., Ekici, A. & Beer, C. (2016) Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. The Cryosphere 10: 2291–2315. https://doi.org/10.5194/tc-10-2291-2016
    Porada, P., Stan, J.T.V. & Kleidon, A. (2018) Significant contribution of non-vascular vegetation to global rainfall interception. Nature Geoscience 11: 563–567. https://doi.org/10.1038/s41561-018-0176-7
    Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. (2014) Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochemical Cycles 28: 71–85. https://doi.org/10.1002/2013GB004705
    Pressel, S., Matcham, H.W. & Duckett, J.G. (2007) Studies of protonemal morphogenesis in mosses. XI. Bryum and allied genera: a plethora of propagules. Journal of Bryology 29 (4): 241–258. https://doi.org/10.1179/174328207X244042
    Pressel, S., Bidartondo, M.I., Ligrone, R. & Duckett, J.G. (2014) Fungal symbioses in bryophytes: new insights in the twenty first century. Phytotaxa 9 (1): 238–253. https://doi.org/10.11646/phytotaxa.9.1.13
    Proctor, M.C. (2000) The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecology 151: 41–49. https://doi.org/10.1023/A:1026517920852
    Proctor, M.C., Oliver, M.J., Wood, A.J., Alpert, P., Stark, L.R., Cleavitt, N.L. & Mishler, B.D. (2007) Desiccation-tolerance in bryophytes: a review. The Bryologist 110: 595–621. https://doi.org/10.1639/0007-2745(2007)110[595:DIBAR]2.0.CO;2
    Reed, S.C., Coe, K.K., Sparks, J.P., Housman, D.C., Zelikova, T.J. & Belnap, J. (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nature Climate Change 2 (10): 752–755. https://doi.org/10.1038/nclimate1596
    Renner, M.A. (2015) Lobule shape evolution in Radula (Jungermanniopsida): one rate fits all? Botanical Journal of the Linnean Society 178: 222–242. https://doi.org/10.1111/boj.12279
    Renzaglia, K.S., Aguilar, J.C.V. & Garbary, D.J. (2018) Morphology supports ­the setaphyte hypothesis: mosses plus liverworts form a natural group. Bryophyte Diversity and Evolution 40: 11–17. https://doi.org/10.11646/bde.40.2.1
    Renzaglia, K.S., Browning, W.B. & Merced, A. (2020) With Over 60 Independent Losses, Stomata Are Expendable in Mosses. Frontiers in Plant Science 11: 567. https://doi.org/10.3389/fpls.2020.00567
    Rice, S.K. (2012) The cost of capillary integration for bryophyte canopy water and carbon dynamics. Lindbergia 35: 53–62.
    Rice, S.K., Aclander, L. & Hanson, D.T. (2008) Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). American Journal of Botany 95: 1366–1374. https://doi.org/10.3732/ajb.0800019
    Rice, S.K., Gagliardi, T.A. & Krasa, R.A. (2018) Canopy structure affects temperature distributions and free convection in moss shoot systems. American Journal of Botany 105: 1499–1511. https://doi.org/10.1002/ajb2.1145
    Rice, S.K., Neal, N., Mango, J. & Black, K. (2011) Relationships among shoot tissue, canopy and photosynthetic characteristics in the feathermoss Pleurozium schreberi. The Bryologist 114: 367–378. https://doi.org/10.1639/0007-2745-114.2.367
    Rose, J.P., Kriebel, R. & Sytsma, K.J. (2016) Shape analysis of moss (Bryophyta) sporophytes: Insights into land plant evolution. American Journal of Botany 4: 652–662. https://doi.org/10.3732/ajb.1500394
    Rousk, K., Degboe, J., Michelsen, A., Bradley, R. & Bellenger, J.-P. (2017) Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytologist 214 (1): 97–107. https://doi.org/10.1111/nph.14331
    Russo, N.J., Robertson, M., MacKenzie, R., Goffinet, B. & Jiménez, J.E. (2020) Evidence of targeted consumption of mosses by birds in sub‐Antarctic South America. Austral Ecology 45 (3): 399–403. https://doi.org/10.1111/aec.12858
    Saiz Val, E. (2020) The effects of increased atmospheric reactive nitrogen deposition upon rates of biological nitrogen fixation in peatlands and temperate forests. Doctoral dissertation, Keele University.
    Shaw, A.J., Schmutz, J., Devos, N., Shu, S., Carrell, A.A. & Weston, D.J. (2016) The Sphagnum Genome Project. In: Advances in Botanical Research. Elsevier, pp. 167–187. https://doi.org/10.1016/bs.abr.2016.01.003
    Sierra, A.M., Toledo, J.J., Allen, N.S. & Zartman, C.E. (2019) Reproductive traits as predictors of assembly chronosequence patterns in epiphyllous bryophyte metacommunities. Journal of Ecology 107: 875–886. https://doi.org/10.1111/1365-2745.13058
    Silva, J.B., Sfair, J.C., dos Santos, N.D. & Pôrto, K.C. (2018) Different trait arrangements can blur the significance of ecological drivers of community assembly of mosses from rocky outcrops. Flora 238: 43–50. https://doi.org/10.1016/j.flora.2017.02.003
    Slate, M.L., Rosenstiel, T.N. & Eppley, S.M. (2017) Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales). Annals of Botany 120: 845–854. https://doi.org/10.1093/aob/mcx071
    Slate, M.L., Stark, L.R., Greenwood, J.L., Clark, T.A. & Brinda, J.C. (2018) The role of prehydration in rescuing shoots of mosses damaged by extreme desiccation events: Syntrichia norvegica (Pottiaceae). The Bryologist 121 (2): 193–204. https://doi.org/10.1639/0007-2745-121.2.193
    Smith, A.J.E. (1982) Bryophyte ecology Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5891-3
    Soudzilovskaia, N.A., Graae, B.J., Douma, J.C., Grau, O., Milbau, A., Shevtsova, A., Wolters, L. & Cornelissen, J.H.C. (2011) How do bryophytes govern generative recruitment of vascular plants? New Phytologist 190: 1019–1031. https://doi.org/10.1111/j.1469-8137.2011.03644.x
    Sousa, F. de, Foster, P.G., Donoghue, P.C.J., Schneider, H. & Cox, C.J. (2019) Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). New Phytologist 222: 565–575. https://doi.org/10.1111/nph.15587
    Spitale, D., Mair, P. & Nascimbene, J. (2020) Patterns of bryophyte life-forms are predictable across land cover types. Ecological Indicators 109: 105799. https://doi.org/10.1016/j.ecolind.2019.105799
    Stanton, D.E., Merlin, M., Bryant, G. & Ball, M.C. (2014) Water redistribution determines photosynthetic responses to warming and drying in two polar mosses. Functional Plant Biology 41: 178–186. https://doi.org/10.1071/FP13160
    Stark, L.R., Mishler, B.D. & McLetchie, D.N. (2000) The cost of realized sexual reproduction: assessing patterns of reproductive allocation and sporophyte abortion in a desert moss. American Journal of Botany 87: 1599–1608. https://doi.org/10.2307/2656736
    Stech, M., Kolvoort, E., Loonen, M.J.J.E., Vrieling, K. & Kruijer, J.D. (2011) Bryophyte DNA sequences from faeces of an arctic herbivore, barnacle goose (Branta leucopsis). Molecular Ecology Resources 11 (2): 404–408. https://doi.org/10.1111/j.1755-0998.2010.02938.x
    Suren, A.M. & Winterbourn, M.J. (1991) Consumption of aquatic bryophytes by alpine stream invertebrates in New Zealand. New Zealand Journal of Marine and Freshwater Research 25 (3): 331–343. https://doi.org/10.1080/00288330.1991.9516487
    Szövényi, P. (2016) Chapter Six-The Genome of the Model Species Anthoceros agrestis. In: Rensing, S.A. (Ed.) Advances in Botanical Research, Genomes and Evolution of Charophytes, Bryophytes, Lycophytes and Ferns. Academic Press, pp. 189–211. https://doi.org/10.1016/bs.abr.2015.12.001
    Tansley, A.G. & Chick, E. (1901) Notes on the Conducting Tissue-System in Bryophyta. Annals of Botany 15: 1–38. https://doi.org/10.1093/oxfordjournals.aob.a088805
    Tiselius, A.K., Lundbäck, S., Lönnell, N., Jansson, R. & Dynesius, M. (2019) Bryophyte community assembly on young land uplift islands–Dispersal and habitat filtering assessed using species traits. Journal of Biogeography 46: 2188–2202. https://doi.org/10.1111/jbi.13652
    Tuba, Z., Slack, N.G. & Stark, L.R. (Eds.) (2011) Bryophyte ecology and climate change. Cambridge University Press.
    U’Ren, J.M., Lutzoni, F., Miadlikowska, J. & Arnold, A.E. (2010) Community Analysis Reveals Close Affinities Between Endophytic and Endolichenic Fungi in Mosses and Lichens. Microbial Ecology 60: 340–353. https://doi.org/10.1007/s00248-010-9698-2
    U’Ren, J.M., Lutzoni, F., Miadlikowska, J., Zimmerman, N.B., Carbone, I., May, G. & Arnold, A.E. (2019) Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nature Ecology & Evolution 3: 1430–1437. https://doi.org/10.1038/s41559-019-0975-2
    Villegas, J.C., Tobón, C. & Breshears, D.D. (2008) Fog interception by non‐vascular epiphytes in tropical montane cloud forests: dependencies on gauge type and meteorological conditions. Hydrological Processes 22: 2484–2492. https://doi.org/10.1002/hyp.6844
    Vilmundardóttir, O.K., Sigurmundsson, F.S., Møller Pedersen, G.B., Belart, J.M.-C., Kizel, F., Falco, N., Benediktsson, J.A. & Gísladóttir, G. (2018) Of mosses and men: Plant succession, soil development and soil carbon accretion in the sub-Arctic volcanic landscape of Hekla, Iceland. Progress in Physical Geography: Earth and Environment 42: 765–791. https://doi.org/10.1177/0309133318798754
    Voortman, B.R., Bartholomeus, R.P., van Bodegom, P.M., Gooren, H., van der Zee, S.E. & Witte, J.P.M. (2014) Unsaturated hydraulic properties of xerophilous mosses: towards implementation of moss covered soils in hydrological models. Hydrological Processes 28: 6251–6264. https://doi.org/10.1002/hyp.10111
    Waite, M. & Sack, L. (2010) How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytologist 185: 156–172. https://doi.org/10.1111/j.1469-8137.2009.03061.x
    Waite, M. & Sack, L. (2011) Does global stoichiometric theory apply to bryophytes? Tests across an elevation × soil age ecosystem matrix on Mauna Loa, Hawaii: Does global stoichiometric theory apply to bryophytes? Journal of Ecology 99: 122–134. https://doi.org/10.1111/j.1365-2745.2010.01746.x
    Wang, L., Zhao, L., Song, X., Wang, Q., Kou, J., Jiang, Y. & Shao, X.-M. (2019) Morphological traits of Bryum argenteum and its response to environmental variation in arid and semi-arid areas of Tibet. Ecological Engineering 136: 101–107. https://doi.org/10.1016/j.ecoleng.2019.06.013
    Wang, Z. & Bader, M.Y. (2018) Associations between shoot-level water relations and photosynthetic responses to water and light in 12 moss species. AoB PLANTS 10: ply034. https://doi.org/10.1093/aobpla/ply034
    Wang, Z., Bao, W., Feng, D. & Lin, H. (2014) Functional trait scaling relationships across 13 temperate mosses growing in wintertime. Ecological Research 29: 629–639. https://doi.org/10.1007/s11284-014-1146-1
    Wang, Z., Bader, M.Y., Liu, X., Zhu, Z. & Bao, W. (2017a) Comparisons of photosynthesis-related traits of 27 abundant or subordinate bryophyte species in a subalpine old-growth fir forest. Ecology and Evolution 7: 7454–7461. https://doi.org/10.1002/ece3.3277
    Wang, Z., Liu, X., Bader, M.Y., Feng, D. & Bao, W. (2017b) The ‘plant economic spectrum’ in bryophytes, a comparative study in subalpine forest. American Journal of Botany 104: 261–270. https://doi.org/10.3732/ajb.1600335
    Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares,, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J. & Villar, R. (2004) The worldwide leaf economics spectrum. Nature 428: 821–827. https://doi.org/10.1038/nature02403
    Wu, N., Zhang, Y., Downing, A., Aanderud, Z.T., Tao, Y. & Williams, S. (2014) Rapid adjustment of leaf angle explains how the desert moss, Syntrichia caninervis, copes with multiple resource limitations during rehydration. Functional Plant Biology 41: 168–177. https://doi.org/10.1071/FP13054
    Xiao, B. & Bowker, M.A. (2020) Moss-biocrusts strongly decrease soil surface albedo, altering land-surface energy balance in a dryland ecosystem. Science of The Total Environment 741: 140425. https://doi.org/10.1016/j.scitotenv.2020.140425
    Xiao, B., Sun, F., Yao, X., Hu, K. & Kidron, G.J. (2019) Seasonal variations in infiltrability of moss-dominated biocrusts on aeolian sand and loess soil in the Chinese Loess Plateau. Hydrological Processes 33: 2449–2463. https://doi.org/10.1002/hyp.13484
    Zanatta, F., Patiño, J., Lebeau, F., Massinon, M., Hylander, K., de Haan, M., Ballings, P., Degreef, J. & Vanderpoorten, A. (2016) Measuring spore settling velocity for an improved assessment of dispersal rates in mosses. Annals of Botany 118: 197–206. https://doi.org/10.1093/aob/mcw092
    Zhang, J., Fu, X.-X., Li, R.-Q., Zhao, X., Liu, Y., Li, M.-H., Zwaenepoel, A., Ma, H., Goffinet, B., Guan, Y.-L., Xue, J.-Y., Wang, Q.-F., Wang, Q.-H., Wang, J.-Y., Zhang, G.-Q., Wang, Z.-W., Jia, Y., Wang, M.-Z., Dong, S.-S., Yang, J.-F., Jiao, Y.-N., Guo, Y.-L., Kong, H.-Z., Lu, A.-M., Yang, H.-M., Zhang, S.-Z., Van de Peer, Y., Liu, Z.-J. & Chen, Z.-D. (2020) The hornwort genome and early land plant evolution. Nature Plants 6: 107–118. https://doi.org/10.1038/s41477-019-0588-4
    Zotz, G. & Kahler, H. (2007) A moss “canopy”–Small-scale differences in microclimate and physiological traits in Tortula ruralis. Flora 202: 661–666. https://doi.org/10.1016/j.flora.2007.05.002
    Zuijlen, K. van, Roos, R.E., Klanderud, K., Lang, S.I., Wardle, D.A. & Asplund, J. (2020) Decomposability of lichens and bryophytes from across an elevational gradient under standardized conditions. Oikos 129: 1358–1368. https://doi.org/10.1111/oik.07257