Open Access Open Access  Restricted Access Subscription or Fee Access

The taxonomic placement of three fossil Fundulus species and the timing of divergence within the North American topminnows (Teleostei: Fundulidae)

MICHAEL J. GHEDOTTI, MATTHEW P. DAVIS

Abstract


The fossils species †Fundulus detillae, F. lariversi, and †F. nevadensis from localities in the western United States are represented by well-preserved material with date estimations. We combined morphological data for these fossil taxa with morphological and DNA-sequence data to conduct a phylogenetic analysis and a tip-based divergence-time estimation for the family Fundulidae. The resultant phylogeny is largely concordant with the prior total-evidence phylogeny. The fossil species do not form a monophyletic group, and do not represent a discrete western radiation of Fundulus as previously proposed. The genus Fundulus diverged into subgeneric clades likely in the Eocene or Oligocene (mean age 34.6 mya, 53–23 mya), and all subgeneric and most species-group clades had evolved by the middle Miocene. †Fundulus lariversi is a member of subgenus Fundulus in which all extant species are found only in eastern North America, demonstrating that fundulids had a complicated biogeographic history. We confirmed †Fundulus detillae as a member of the subgenus Plancterus. †F. nevadensis is not classified in a subgenus but likely is related to the subgenera Plancterus and Wileyichthys.

 


Keywords


Pisces, Truckee Formation, Siebert Tuff, biogeography, Fundulus detillae, Fundulus lariversi, Fundulus nevadensis

Full Text:

PDF (3MB)

References


Abers, J.P. & Stewart, J.H. (1972) Geology and mineral deposits of Esmeralda County, Nevada. Nevada Bureau of Mines and Geology Bulletin, 78, 1–80.

Bell, M.A. (1977) A Late Miocene marine threespine stickleback, Gasterosteus aculeatus aculeatus, and its zoogeographic and evolutionary significance. Copeia, 1977, 277–282.
https://doi.org/10.2307/1443909

Bell, M.A. (1994) Paleobiology and evolution of threespine stickleback. In: Bell, M.A. & Foster, S.A. (Eds.), The Evolutionary Biology of the Threespine Stickleback. Oxford University Press, Oxford, pp. 428–471.

Davis, M.P., Arratia, G.A. & Kaiser, T. (2013) The first fossil shellear and its implications for the evolution and divergence of the Kneriidae (Teleostei: Gonorynchiformes). In: Arratia, G.A., Schultze, H.P. & Wilson, M.V.H. (Eds.), Mesozoic Fishes V. Verlag Dr. F. Pfeil, München, pp. 325–362.

Davis, M.P., Sparks, J.S. & Smith, W.L. (2016) Repeated and Widespread Evolution of Bioluminescence in Marine Fishes. PLOS ONE, 11 (6), e0155154.
https://doi.org/10.1371/journal.pone.0155154

Drummond, A. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
https://doi.org/10.1186/1471-2148-7-214

Eastman, C.R. (1917) Fossil fishes of the collection of the United States National Museum. Proceedings of the United States National Museum, 52, 235–304.
https://doi.org/10.5479/si.00963801.52-2177.235

Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using a bootstrap. Evolution, 39, 783–791.
https://doi.org/10.2307/2408678

Ghedotti, M.J. & Davis, M.P. (2013) Phylogeny, classification, and evolution of salinity tolerance of the North American topminnows and killifishes, Family Fundulidae (Teleostei: Cyprinodontiformes). Fieldiana, Life and Earth Sciences, 7, 1–65.
https://doi.org/10.3158/2158-5520-12.7.1

Ghedotti, M.J., Simons, A.M. & Davis, M.P. (2004) Morphology and phylogeny of the studfish clade, subgenus Xenisma (Teleostei, Cyprinodontiformes). Copeia, 2004, 53–61.
https://doi.org/10.1643/CI-02-184R2

Heath, T.A., Huelsenbeck, J.T. & Stadler, T. (2014) The fossilized birth-death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences USA, 111, 2957–2966. [E2957–E2966]
https://doi.org/10.1073/pnas.1319091111

Helmsttetter, A.J., Oaoadopulos, A.S.T., Igea, J., Van Dooren, T.J.M., Leroi, A.M. & Savolainen, V. (2016) Viviparity stimulates diversification in an order of fish. Nature Communications, 7, 11271.
https://doi.org/10.1038/ncomms11271

Hertwig, S.T. (2008) Phylogeny of the Cyprinodontiformes (Teleostei, Atherinomorpha): The contribution of cranial soft tissue characters. Zoologica Scripta, 37, 141–174.
https://doi.org/10.1111/j.1463-6409.2007.00314.x

Hibbard, C.W. & Dunkle, D.H. (1942) A new species of cyprinodontid fish from the Pliocene of Kansas. Kansas Geological Survey Bulletin, 41, 270–276.

Hrbek, T. & Meyer, A. (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). Journal of Evolutionary Biology, 16, 17–36.
https://doi.org/10.1046/j.1420-9101.2003.00475.x

Ksepka, D.T., Balanoff, A.M., Bell, M.A. & Houseman, M.D. (2013) Fossil grebes from the Truckee Formation (Miocene) of Nevada and a new phylogenetic analysis of Podicipediformes (Aves). Paleontology, 56, 1149–1169.
https://doi.org/10.1111/pala.12040

Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: A novel method for rapid multiple sequence alignment based on the fast Fourier transformation. Nucleic Acids Research, 30, 3059–3066.
https://doi.org/10.1093/nar/gkf436

Lewis, P.O. (2001) A likelihood approach to estimating phylogeny with discrete morphological character data. Systematic Biology, 50, 913–925.
https://doi.org/10.1080/106351501753462876

Lugaski, T. (1977) Fundulus lariversi, a new Miocene fossil cyprinodont fish from Nevada. The Wassmann Journal of Biology, 35, 203–211.

McMahan, C.D., Chakrabarty, P., Sparks, J.S., Smith, W.L. & Davis, M.P. (2013) Temporal Patterns of Diversification across Global Cichlid Biodiversity (Acanthomorpha:Cichlidae). PLoS ONE, 8 (8), e71162.
https://doi.org/10.1371/journal.pone.0071162

Miller, R.R. (1945) Four new species of fossil cyprinodont fishes from eastern California. Journal of the Washington Academy of Science, 35, 315–321.

Near, T.J., Eytan, R.I., Dornburg, A., Kuhn, K.L., Moore, J.A., Davis, M.P., Wainwright, P.C., Friedman, M. & Smith, W.L. (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences, 109 (34), 13698–13703.
https://doi.org/10.1073/pnas.1206625109

Posada, D. (2008) jModeltest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.
https://doi.org/10.1093/molbev/msn083

Robertson, G.M. (1943) Fundulus sternbergi, a Pliocene fish from Kansas. Journal of Paleontology, 17, 305–306.

Silbermann, M.L. & McKee, E.H. (1972) A summary of radiometric age determination of Tertiary volcanic rocks from Nevada and eastern California, Part II – western Nevada. Isochron/West, 4, 7–28.

Smith, C.L. (1962) Some Pliocene fishes from Kansas, Oklahoma, and Nebraska. Copeia, 1962, 505–520.
https://doi.org/10.2307/1441172

Smith, G.R., Dowling, T., Gobalet, K.W., Lugaski, T., Shiazawa, D. & Evans, R.P. (2002) Biogeography and timing of evolutionary events among Great Basin fishes. In: Hershler, R., Madsen, D.B. & Currey, D.R. (Eds.), Great Basin Aquatic Systems History. Smithsoniam Contributions to Earth Sciences, 33, 175–234.

Smith, W.L., Chakrabarty, P. & Sparks, J.S. (2008) Phylogeny, taxonomy, and evolution of neotropical cichlids (Teleostei: Cichlidae: Cichlinae). Cladistics, 24, 625–641.
https://doi.org/10.1111/j.1096-0031.2008.00210.x

Stadler, T. (2010) Sampling-through-time in birth-death trees. Journal of Theoretical Biology, 267, 396–404.
https://doi.org/10.1016/j.jtbi.2010.09.010

Whitehead, A. (2010) The evolutionary radiation of diverse osmotolerant physiologies in killifish (Fundulus spp.). Evolution, 64, 2070–2085.

Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Unpublished Ph.D. thesis, University of Texas, Austin, 115 pp.




DOI: http://dx.doi.org/10.11646/zootaxa.4250.6.5

Refbacks

  • There are currently no refbacks.


 
ISSN 1175-5326 (Print Edition) & ISSN 1175-5334 (Online Edition)
Published by Magnolia Press, Auckland, New Zealand