Phylogenetic status of some unique species representing Blapstinina Mulsant & Rey (Tenebrionidae: Blaptinae: Opatrini), and implications for continued study of the subtribe

MARCIN JAN KAMIŃSKI12, RYAN LUMEN14, KOJUN KANDA3 & AARON DENNIS SMITH2
1Zoological Museum, Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland
2Purdue University, Department of Entomology, 901 W. State Street, West Lafayette, IN 47907, USA
3USDA Systematic Entomology Laboratory, c/o Smithsonian Institution, National Museum of Natural History, Washington, DC, U.S.A.
4Corresponding author. m. kaminski@entasscr.poznan.pl; https://orcid.org/0000-0002-2915-0614

Abstract

Blapstinus Dejean is the most taxonomically challenging genus within Blapstinina Mulsant & Rey (Tenebrionidae: Opatrini). With over 120 species, it is widely distributed throughout the Americas, with representatives reaching Canada on the northern range edge, and Argentina, Chile, and Uruguay in the south. Traditionally, Blapstinus has been distinguished from other blapstinoid beetles via well-developed metathoracic wings and their lack of synapomorphies present in other genera; however, fused and tapering aedeagal parameres were recently introduced as a potential autapomorphy for the genus. This study used molecular data (nuclear ribosomal 28S, cytochrome oxidase subunit II (COII), arginine kinase (ArgK), carbomyl-phosphate synthetase domain of rudimentary (CAD), and wingless (wg)) to investigate the phylogenetic placement and taxonomic status of three Blapstinus species with distinct male genitalic morphology, i.e. Blapstinus tibialis Champion (USA), B. grandis Champion (Mexico, Nicaragua), and B. punctulatus Solier (Argentina, Bolivia, Brazil, Chile, Uruguay). Analyses highlight the phylogenetic informativeness of the aedeagal morphology within the subtribe, and support an urgent need for taxonomic studies of South American taxa. Blapstinus tibialis and B. grandis were recovered as a specific lineage within Blapstinus that can be easily distinguished from remaining congeners by having tridentate parameres. A lectotype for B. grandis is designated to fix the taxonomic status of this species. Blapstinus punctulatus was recovered outside of its current genus which, along with aedeagal morphology, supports a change of status of the species. As a result, the following synonymy and combinations are introduced: Lodinus Mulsant and Rey stat. restit. (=Austrocaribius Marcuzzi syn. nov.), Lodinus araguae (Marcuzzi) comb. et stat. nov., L. punctulatus comb. nov., L. venezuelensis (Marcuzzi) comb. nov. Lectotypes for Lodinus nigroaeanus Mulsant and Rey, L. araguae, and L. punctulatus are designated to fix the taxonomic status of these species.

Key words: darkling beetles, Austrocaribius, Blapstinus, Lodinus, parameres, Neotropics, South America

Introduction

Blapstinina Mulsant & Rey is a subtribe endemic to the Americas, containing over 200 species classified within the following genera (Hart & Ivie 2016a, Ivan & Kamiński 2016, Ivie & Hart 2016, Bousquet et al. 2018, Lumen et al. 2019, Kamiński et al. 2019a, b, 2021, Johnston et al. 2020, Bouchard et al. 2021): Aconobius Casey, Amodonus Mulsant & Rey, Austrocaribius Marcuzzi, Blapstinus Sturm, Cenophorus Mulsant & Rey, Conibiosoma Casey, Conibius LeConte, Cypobus Casey, Diastolinus Mulsant & Rey, Goajiria Ivie & Hart, Hummelinckia Marcuzzi, Nevisia Marcuzzi, Nocibiotes Casey, Notibius LeConte, Platylus Mulsant & Rey, Tonibius Casey, Tonibiestes Casey, Trichoton Hope, Ulus Horn, Xerolinus Ivie & Hart. Morphologically, the subtribe is well defined within Opatrini Brullé; i.e. eyes completely divided by extending genae (Iwan & Kamiński 2016, Lumen et al. 2020, Kamiński et al. 2021).

Blapstinus, with over 120 species (present estimation), is the most speciose genus within Blapstinina (Casey

The majority of available morphological concepts for Blapstinus highlight the presence of metathoracic wings as the most reliable diagnostic feature for the genus (Davis 1970, 1976, 1980, Aalbu & Triplehorn 1985), while not providing any synapomorphies. Furthermore, in many direct comparisons Blapstinus has been defined by a lack of synapomorphies reported for other winged blapstinoid genera. For example, absence of lateral fimbrial setae extending off the pronotum and elytron, and unexpanded foretibia were used to distinguish it from Ulus (Davis 1976, Aalbu & Triplehorn 1985). Nevertheless, a recent molecular investigation of Blapstinina has supported the monophyly of Blapstinus including Mecysmus Horn—another previously recognized flighted genus in Blapstinina (Lumen et al. 2020). By comparing morphological (Davis 1970, Iwan 2001, 2004, Ivie & Hart 2016) and molecular data, Lumen et al. (2020) concluded that fused and tapering parameres could potentially be used as a reliable, diagnostic feature for Blapstinus.

The only known exceptions to this character were Blapstinus tibialis Champion and an unpublished species from Southern Texas introduced in Davis’ (1970) dissertation, which both possess tridentate parameres. Recent dissections of Mexican and Central American Blapstinus revealed an additional species (B. grandis Champion) has similarly modified parameres (Fig. 1). Finally, Blapstinus punctulatus from South America was found to possess an aedeagus with a truncate apex of the tegmen (Fig. 1).

Given the importance of male aedeagal modifications in helping to define genera in Blapstinina (Marcuzzi 1954, Ivie & Hart 2016, Lumen et al. 2019), the aim of this investigation is to determine the phylogenetic placement of B. grandis, B. tibialis, and B. punctulatus. To this end, specimens were sequenced and included in the molecular dataset for Blapstinina from Lumen et al. (2020) to test whether these species with apomorphic aedeagi fall outside of Blapstinus. The implications for defining Blapstinus are then discussed in the context of the new phylogeny.

Material and methods

Molecular analysis

Molecular data for Blapstinus grandis, B. tibialis, and B. punctulatus were obtained from specimens collected into and stored in ethanol following methodologies presented in Lumen et al. (2020). The following loci were targeted: nuclear ribosomal 28S (1,087 bp), cytochrome oxidase subunit II (711 bp), arginine kinase (668 bp), carbamoyl-phosphate synthetase domain of rudimentary (906 bp), wingless (462 bp). All newly acquired sequences were submitted to GenBank and are available under the following accession numbers: (OL445118–OL445123 and OL438932–OL438933). Molecular voucher specimens are deposited in the Purdue Entomological Research Collection (PERC) at Purdue University in West Lafayette, Indiana.

Newly generated sequences were included with the dataset from Lumen et al. (2020) for phylogenetic analyses to examine the placement of the three newly investigated Blapstinina species (Kamiński 2021). Data partitions were determined by gene and codon position (for protein coding genes), and models of sequence evolution for Bayesian phylogenetic analyses were assessed in IQ-Tree v. 2.1.2 (Minh et al. 2020) implemented on the CIPRES Science Gateway (Miller et al., 2010). Bayesian analyses were run through CIPRES using MrBayes v.3.2.6 (Ronquist et al. 2012). Two independent runs were performed, each with four chains. Analyses were run for 20 million generations and were sampled every 1,000 generations with a burn-in fraction of 25%. Branch support was displayed as posterior probabilities (PP). Maximum likelihood (ML) analysis was conducted in IQ-Tree on the CIPRES Science Gateway. The run was performed allowing partitions to have different speeds (--p). Branch support was estimated with 1,000 ultrafast bootstrap (UBF) replicates (Minh et al., 2013). Models of sequence evolution for this analysis were assessed in IQ-Tree prior to phylogenetic analysis.

Morphological and distribution data

The descriptive style adopted here follows that of Lumen et al. (2019). Morphological terminology was adopted
after Ivie & Hart (2016), with additional specialized terms used for male and female genitalia (Iwan & Kamiński 2016). Taxa authors and publication years follow Bouchard et al. (2021). Images were taken using a Canon 1000D body with Canon Macro Lens EF 100. Photos of type specimens of Blapstinus grandis and B. tibialis were acquired from the Museum of Comparative Zoology, Harvard (MCZ) and Natural History Museum, London (BMNH) respectively. Pinned specimens of Lodinus for morphological examination were from the collections of Museum and Institute of Zoology of the Polish Academy of Sciences (MIZ PAS) and Muséum national d’Histoire naturelle, Paris (MNHN). Scanning electron microscopy images of Lodinus araguae parameres were acquired with a Hitachi S-3400 N in MIZ PAS.

A map illustrating the distribution of Lodinus was produced with Quantum GIS (QGIS) v. 2.4 and free GIS layers available at https://www.naturalearthdata.com/. Distributional data was acquired from labels of studied specimens and literature (Marcuzzi 1951, 1954, 1983, 1986, Peña 1966, Aballay et al. 2016). Records are represented by a centrally localized point(s) in cases of specimens with province-only data.

Results

The topology of Blapstinina recovered with IQ-Tree closely matches the ML tree presented by Lumen et. al (2020). Subtribe Blapstinina was again monophyletic and well-supported (UFB = 100, PP = 1.0) (Fig. 1). Each overall clade (Ammodonus, Blapstinus, Conibius+Notibius+Nocibiotes, Trichoton, and Ulus) remained intact as of this study, with high branch support (Fig. 1). However, relationships between some clades shifted in this analysis. The Conibius+Notibius+Nocibiotes clade, rather than being recovered sister to a clade made up of Ulus and Xerolinus (Lumen et. al 2020); was placed sister to a clade containing Blapstinus, Ulus, Xerolinus, and B. punctulatus (Fig. 1). Inconsistency between the ML topology of this study and Lumen et. al (2020) only concerns clades with negligible support in both studies.

The three focal taxa of this investigation were also recovered within Blapstinina (Fig. 1). Specifically, Blapstinus grandis and B. tibialis were recovered, in both Bayesian and maximum likelihood analyses, together within the Blapstinus clade and sister to B. fortis + B. vestitus with strong support (UFB = 100, PP =1.0). Maximum likelihood analysis rendered Blapstinus punctulatus sister to Ulus with negligible support (UFB = 46), while Bayesian analyses placed it sister to a large clade containing majority of included Blapstinina (all except Ammodonus and Trichoton). Statistical support for the clade grouping Blapstinus, Conibius, Notibius, Nocibiotes, Ulus, and Xerolinus was low (PP = 0.63). Divergences between maximum likelihood and Bayesian topologies only involved nodes that were poorly supported in both (Fig. 1).

Discussion

The results here challenge traditionally accepted diagnostic characters (i.e., presence of metathoracic wings, lack of externally distinct apomorphies) for Blapstinus (Davis 1970, Aalbu & Triplehorn 1985). Despite a high overall resemblance of all three examined species (Fig. 2), molecular data recovered them in different parts of the Blapstinina phylogenetic tree (Fig. 1). Blapstinus tibialis and B. grandis were placed among other Blapstinus, while B. punctulatus was recovered as a separate lineage far outside the genus (Fig. 1).

Status of Blapstinus punctulatus

Although molecular support for the placement of B. punctulatus is low, a review of available literature revealed that this species fell within the morphological concept of Austrocaribius (Marcuzzi 1982, 1986). Marcuzzi (1954) distinguished Austrocaribius from Blapstinus using the following characters: antennal segments eight-eleven transverse, segments six and seven more or less square, the remaining segments longer than wide; intercoxal process of prosternum developed posteriorly in an oval-lanceolate point, seen in profile prominent and abruptly truncate; penis widely projecting between the parameres, apical part of tegmen truncate, and contiguous. Upon examination of type material of Austrocaribius and comparison with representatives of Blapstinus, it is difficult to reliably separate Austrocaribius from Blapstinus using most of the characters Marcuzzi outlined (e.g., both Blapstinus and Austrocaribius have clavate antennae, resulting in the last 4 antennomeres becoming more-or-less transverse). The
aedeagal characters remain useful and, as of this study, can be used to consistently delineate the two genera (Fig. 1). However, the relationship uncovered by morphological comparison between *Blapstinus punctulatus* and previously known species of *Austrocaribius* necessitates the following nomenclatural acts: Namely, *Blapstinus punctulatus* is a synonym of *Lodinus nigroaeneus* Mulsant and Rey (see Bouchard et al. 2021), which is the type species of the monotypic genus *Lodinus* that was synonymised with *Blapstinus* by Gemminger in Gemminger and Harold (1870). Since the name *Lodinus* predates *Austrocaribius* by 95 years, the change in status of *Blapstinus punctulatus* therefore requires introduction of the following synonymy and combinations: Lodinus Mulsant and Rey **stat. restit.** (=*Austrocaribius* Marcuzzi **syn. nov.**), Lodinus araguae (Marcuzzi) **comb. et stat. nov.** [transferred from *Austrocaribius*], *L. punctulatus** **comb. nov.** (=*Lodinus nigroaeneus*), *L. venezuelensis* (Marcuzzi) **comb. nov.** [transferred from *Austrocaribius*].

The unexpected phylogenetic position of *L. punctulatus* highlights an urgent need for additional morphological investigation of South American Blapstinina, especially those superficially resembling *Blapstinus*. Taxonomic acts in this paper greatly extend the range and change the status of a previously geographically restricted genus *Lodinus*. Furthermore, there are 75 species and subspecies of *Blastinus* recorded North of Mexico (Bousquet et al. 2018), and
no official records available for Argentina (Fairmaire 1883, present paper, Gustavo Flores pers. comm.). Additionally, as a result of investigating taxon records for this study, it was revealed to the authors that the holotype of *Blapstinus metallescens* Fairmaire does not represent Tenebrionidae (Cabrera *et al.* 2010, Gustavo Flores pers. comm.).

Status of *Blapstinus tibialis* and *B. grandis*

Despite unique morphology of male genitalia (Fig. 1), *B. tibialis* and *B. grandis* were both recovered within *Blapstinus*—sister to *B. fortis + B. vestitus*, which both possess fused and tapering parameres. While this result potentially disrupts the clarity of diagnostic features proposed for *Blapstinus* by Lumen *et al.* (2020), recovery of a well-characterised *B. tibialis-B. grandis* species group may serve as a reference point in future revisionary work on the genus.

Taxonomy

Genus *Lodinus* Mulsant and Rey stat. restit. *Lodinus* Mulsant and Rey, 1859: 195.

Type species: *Lodinus nigroaeneus* Mulsant and Rey, 1859 (= *Blapstinus punctulatus* Solier, 1851), by monotypy.

Composition (3 species, Fig. 4). *Lodinus araguae* stat. et comb. nov. (Marcuzzi) (Venezuela), *L. punctulatus* comb. nov. (Argentina, Bolivia, Chile, Uruguay), *L. venezuelensis* comb. nov. (Marcuzzi) (Colombia, Venezuela).

Diagnosis. While many Blapstinina possess overlapping characteristics, *Lodinus* can be distinguished from other genera through the combination of the following characters: unfused elytra, well-developed metathoracic wings, parameres with truncate apex (Fig. 1), and median lobe widely projecting between the parameres with the part visible from above oval-elongate and the apex acuminate.

Future studies should concentrate on investigating female terminalia within *Lodinus* as the current study revealed a presence of a hook-like baculus of the 4th coxite in the case of *L. punctulatus* (Fig. 3B). Ovipositors of *L. araguae* and *L. venezuelensis* were not possible to investigate here due to a lack of specimens.

More specific features separating *Lodinus* from other Blapstinina genera are listed below:

* **Aconobius** (Southwestern US): Densely setose dorsally and laterally fimbriate (Aalbu & Triplehorn 1985). *Lodinus* lacks dense setae (Fig. 2A, E, F). Parameres of *Aconobius* evenly tapering towards apex (Iwan 2004), truncate in *Lodinus* (Fig. 1, 3D).

* **Ammodonus** (North America, Central America, South America, and Caribbean Islands): Covered in flattened, scale-like setae (feature missing in *Lodinus*). Mentum with visible median keel and exposed lateral wings. All other Blapstinina, including *Lodinus*, characterized by flat mentum (Lumen *et al.* 2020).

* **Blapstinus** (North America, Central America, South America, and Caribbean Islands): Only reliably distinguishable by differences in male genitalia morphology: median lobe within *Blapstinus* not widely projecting between parameres which are often fused together, and are not apically truncated (contrary to *Lodinus* with widely projecting median lobe and apically truncated parameres) (Fig. 1). Parameres usually tapering in *Blastinus* (tridentate in *B. grandis-B. tibialis* species-group).

* **Cenophorus** (Monotypic; Hispaniola): fused elytra (flightless). Basal margin of pronotum interrupted in mesal 1/3 (basal margin complete in *Lodinus*), while hind margin of pronotum is medially depressed below plane of scutellar shield (Ivie & Hart 2016). Apex of parameres not truncated (Ivie & Hart 2016).

* **Conibiosoma** (Monotypic; Southwest US): Lacks developed flight wings. Dense setal fimbriae on lateral margin of pronotum. With small tubercles on elytral intervals. Further separated from *Lodinus* through curvature in aedeagus in lateral view; sinuate in *Conibiosoma* (Aalbu & Triplehorn 1985, Iwan 2004), arcuate in *Lodinus* (Fig. 1).

* **Notibius** (Southwest US and Mexico): Lacks developed flight wings. Dense setal fimbriae on lateral margin of pronotum. Foretibiae expanded and slightly curved (narrow and straight in *Lodinus*). Aedeagus curvature sinuate in lateral view (Iwan 2004).
Conibius (North and South America): Most plesiomorphic genus among flightless Blapstinina, and traditionally defined by lack of apomorphies reported for other genera (Aalbu & Triplehorn 1985). Male genitalia variable among species currently included in *Conibius* (Iwan 2004). Reliably separable from *Lodinus* via flightlessness regardless of current monophyly.

Goajiria (Caribbean Islands and South America): Elytra fused. Similar to *Lodinus*, *Goajiria* possess truncate paramere apices. Median lobe of *Goajiria* does not widely project between parameres (Iwan 2004). Reliably separable from *Lodinus* via flightlessness regardless of current monophyly.

Hummelinckia (Monotypic, Caribbean Islands): Lacks metathoracic wings (Marcuzzi 1954). Furthermore, according to Marcuzzi’s description, unlike *Lodinus* (Fig. 2A, E, F), *Hummelinckia* with strongly reduced scutellar shield. Lastly, basal and apical portions of male genitalia (in lateral view) sinuate in *Hummelinckia* (similar to *Conibiosoma*, *Nocibiotes* & *Notibius*).

Nevisia (Monotypic, Caribbean Islands): Elytra fused. Parameres sinuate (in lateral view) and tapered apically (Ivie & Hart 2016).

Nocibiotes, Tonibiastes, and Tonibius (North America): Lack fully developed wings and possess costate/elevated elytral intervals (Aalbu & Triplehorn 1985).

Platylus (monotypic, Virgin Islands): Elytra fused (Ivie & Hart 2016). Compared to *Lodinus*, *Platylus* is well characterised by large body size (10.0–12.5 mm) and oval body shape. *Platylus* also possess two well-defined apophyseal indentations on pronotal disc (Ivie & Hart 2016), absent in *Lodinus*.

Ulus: Pronotum and elytra covered with setae and bearing lateral fimbriae. Foretibia dilated, ending in a distal ‘tooth’ (Lumen et al. 2019). Appears to be only blapstinine with enlarged, membranous field on basal portion of aedeagal tegmen (Lumen et al. 2019).

Xerolinus (North America and Caribbean Islands): Recently erected genus differs from *Lodinus* as follows (Ivie & Hart 2016, Hart & Ivie 2016b): wings absent or reduced; seventh and eighth elytral striae fused anteriorly. Parameres rounded apically.

Lodinus araguae (Marcuzzi), comb. et stat. nov.

Austrocaribius venezuelensis araguae Marcuzzi, 1983: 259

Notes. Taking into consideration new morphological data concerning *L. punctulatus* and coarse differences in male genitalia structure (Figs 46 and 46 in Marcuzzi 1983; Figs 1, 3D) between the two previously recognized subspecies of *L. venezuelensis* (i.e., *araguae* and *venezuelensis*), a decision is hereby made to elevate them to the species level.

While describing this species Marcuzzi (1983) did not designate a holotype, nor explicitly state the number of studied specimens. As a result a lectotype designation is needed to fix the taxonomic status of the species.

Studied material. LECTOTYPE (here designated), male (MIZ PAN): “Loma del Medio / San Sebastian / (Edo. Aragua)”, “BORDON leg. \ 3-VI-1962” (Fig. 2E). PARALECTOTYPES, male (MIZ PAN); same data as lectotype; female (MIZ PAN); same data as lectotype with additional label: “Paratypus 1986 \ Austrocaribius venezuelensis araguae ssp. \ Marcuzzi” (Fig. 2F).

Lodinus punctulatus (Solier), comb. nov.

Blapstinus punctulatus Solier, 1851: 233

=*Lodinus nigroaeneus* Mulsant and Rey, 1859: 131 (syn. by Gemminger in Gemminger and Harold, 1870)

Note. While proposing synonymy between *Alphitobius punctatus* Curtis, 1845 and *Blapstinus punctulatus* Solier,
1851, to avoid secondary homonymy with *Blapstinus punctatus* (Fabricius), Gebien (1938) rejected *Alphitobius punctatus* Curtis, 1845 and replaced it with its oldest available synonym—*Blapstinus punctatus* Solier, 1851. According to the regulations of ICZN (1999), particularly art. 59.3, a junior secondary homonym replaced before 1961 is permanently invalid unless the substitute name is not in use and the relevant taxa are no longer considered congeneric. As a result the valid name of the below redescribed species is *Lodinus punctatus* (Solier).

Descriptions of *B. punctatus* and *L. nigroaeneus* do not include holotype designations. As a result, lectotype designations are needed to fix the taxonomic status of these names.

Diagnosis. Newly examined material enables supplementation of available descriptions of this species (Curtis 1845, Solier 1851, Mulsant and Rey 1859, Aballay et al. 2016) with data on male and female terminalia. Therefore, a redescription is provided below and a new diagnosis is provided to accommodate this species with its new congeners.

The following features place this species within *Lodinus* (Marcuzzi 1954, 1982): median lobe of aedeagus widely projecting between parameres; parameres with truncate apex (Fig. 1).

Lodinus punctatus can be easily distinguished from its congeners by differing pronotal structure (Marcuzzi 1954): anterior angles rounded, not prominent (pointed and prominent in remaining species); punctures sparsely distributed on disc (>1.0 diameters apart vs. <0.75 in remaining species). Furthermore, *L. punctatus* is the only species within the genus which possesses subparallel parameres in their apical portion (slightly narrowing towards apex in *L. venezuelensis*—Figs 46 and 46 in Marcuzzi 1983; strongly indented in *L. araguae*—Fig. 3D). Lastly, as of this redescription, *L. punctatus* is the only species of the genus known from south of the equator (Fig. 4).

Redescription. Length 4.9–6.2 mm, width 2.1–2.6 mm. **Body** (Fig. 2A): dull brown to black; dorsal and ventral surfaces matte; ovate-oblong; widest at 2/3 of elytral length; weakly convex in lateral view; evenly covered with fine setae dorsally. **Head:** Epistoma broadly convex; punctures equal to diameter of an ommatidium (distributed 1–2 diameters apart); setae equal in length to intervals between punctures. Fronto-epistomal suture slightly marked on sides. Epistoma weakly emarginate. **Prothorax:** Pronotum narrowing anteriorly, apical angles sharp. Lateral margin slightly rounded; margined. Basal width slightly narrower than humeri; basal margin slightly bisinuate. Disc sparsely but noticeably covered with setae; finely punctate (punctures 1–3 diameters apart). **Elytral striae** poorly developed. **Epistoma** weakly impressed. **Scutellar shield:** Pentagonal, of equal width and length, finely punctate. **Pterothorax:** Elytral striae shallow and punctate (1–2 diameters apart). Striae not joining prior humeral angle. Intervals flat, punctate (0.5–1.0 diameters apart), with noticeable microsculpture. Epipleura finely punctate. Metathoracic wings well developed. **Metaventrite long, sparsely punctate; sparse setae present. Legs:** Protibia apically dilated with lateral projection at apex. Meso and meta tibia straight and dilated apically. Pro- and mesotarsomeres 2 and 3 dilated in males (Fig. 2B, C). **Abdominal ventrites:** Finely punctate, scattered with setae; intercoxal process narrowly rounded; ventrite 5 with posterior margin evenly rounded, not bordered. **Aedeagus** (Fig. 1): whole tegmen evenly curved in lateral view. Apical part of aedeagus truncate; median lobe opening circular. **Female terminalia** (Fig. 3A–C): Ovipositor with paraprocts slightly longer than coxites. Paraproct does not shield valvifer and other lobes (directed basally). Valvifer wide and short; second lobe elongate; third one semicircular (about 0.5 of height of third one); apical lobe rounded, situated apically, sclerotised at outer and inner edges, inner sclerotisation hook-like, gonostyli on dorsal side, directed inwards. Proctiger covering nearly whole ovipositor. Vagina without sclerites. Spermatheca with narrow duct. Spiculum ventrale short.
Distribution. ARGENTINA, BRASIL, BOLIVIA, CHILE, URUGUAY (Fig. 4).

FIGURE 2. Morphology of studied Blapstinina species. Habitus photographs and diagnostic features. (A–C) *Lodinus punctulatus* comb. nov., (D–F) *Lodinus araguae* comb. nov., (G) *Blapstinus tibialis*, (H, I) *Blapstinus grandis*. (B) protarsus, (C) mesotarsus, (D) last 5 antennomeres, (I) apical tip of epipleura.

Genus Blapstinus Dejean, 1821

Blapstinus grandis Champion, 1885

Note. While describing this species Champion (1885) did not designate a holotype, nor state the exact number of the studied specimens. However, from the context it is clear that *B. grandis* was described based on at least two specimens (female and male). As a result a lectotype designation is needed to fix the taxonomic status of the species.

Studied material. LECTOTYPE (here designated), female (MCZ): “Chontales / Nicaragua / Janson.,” “Type / 7089”, “Ex / Godman / and / Salvin.,” “Blapstinus / grandis, Ch””, ”grandis / Champ.”. Additional material: 29 specimens (PERC): “MEXICO: Chiapas / 12.4 km NE of Tonala / 16.153, -93.6466, 435m / 12.Aug.2015, AD-
PHYLOGENETIC STATUS OF SOME UNIQUE BLAPSTININA SPECIES

Zootaxa 5093 (5) © 2022 Magnolia Press · 527

Blapsteninus tibialis Champion, 1885

Redescription. Length 5.5–7.0 mm, width 3.0–3.5 mm. **Body** (Fig. 2G): black, reddish or brown, legs and antennomeres brown brown; dorsal and ventral surfaces shiny; ovate-oblong; widest at 2/3 of elytral length; weakly convex in lateral view; evenly covered with fine setae dorsally. **Head**: Epistoma broadly convex; punctures equal to diameter of an ommatidium (distributed less than single diameter apart); setae 2x length of internals between punctures. Fronto-epistomal suture visible on sides. Epistoma weakly emarginate. **Prothorax**: Widest at middle; apical margin evenly, broadly emarginate; apical angles sharp. Lateral margin evenly rounded or slightly sinuate. Basal width slightly narrower than humeri; basal margin bisinuate; dorsal surface broadly, evenly convex; all margins narrowly beaded, except obsolete at middle of anterior margin; disc finely punctate (punctures 1–3 diameters apart). Hypomeron glabrous near margin, then rugulose; whole hypomeron in single plane. Intercostal process of prothorax tongue-like, densely punctate, depressed in lateral view. **Scutellar shield**: Subtriangular, of equal width and length, finely punctate. **Pterothorax**: Elytral striae impressed; strial punctures shallow (single diameter apart); intervals flat, finely punctate (3–5 diameters apart), punctures setose. Striae not joining prior humeral angle. Epipleura evenly and slightly narrowing towards apex in males; in females tip of epipleura circularly expanded (Fig. 2I). Metathoracic wings well developed. Metaventrite long, punctate; sparse setae present. **Legs**: Inner surfaces of tibiae densely setose and finely punctate in males; sparsely setose in female. Male protibia narrow, with a shallow, longitudinal cavity on inner side; female protibia lacking this feature. Male and female protarsi with tarsomeres 1–3 slightly expanded, ventrally with golden, densely setose pads. Male foretibia slightly bent. Remaining leg parts not modified in both sexes. **Abdominal ventrites**: Finely punctate, scattered with setae; intercoxal process narrowly rounded; ventrite 5, in males, medially slightly concave, posterior margin evenly rounded. **Aedeagus** (Fig. 1): Basal piece slightly curved basally (lateral view); parameres straight, appearing as tridentate, length of lateral outgrowths equal to 0.6 of total parameres length. **Female terminalia**: Ovipositor with paraprocts slightly longer than coxites. Paraproct does not shield valvifer and other lobes (directed basally). Valvifer wide and short; second lobe elongate; third one triangular (about 0.5 of height of third one); apical lobe rounded, situated dorsally, bearing reduced gonostylus on dorsal side. Proctiger covering nearly whole ovipositor. Vagina without sclerites; bursa largely widened and curved. Spermatheca with narrow duct. Scopulun ventrale short.

Distribution. CARIBBEAN, MEXICO (Jalisco, Sinaloa), NICARAGUA (Bousquet et al. 2018); MEXICO (Chiapas) (present paper).
Metaventrite long, punctate; sparse setae present. **Legs:** Surfaces sparsely setose and finely punctate. Male protibia narrow, with a shallow, longitudinal cavity on inner side; female protibia lacking this feature. Male protarsus with tarsomeres 1–3 expanded, ventrally with golden, densely setose pads; female with subsequent segments of nearly equal width. Remaining leg parts not modified in both sexes. **Abdominal ventrites:** Finely punctate, scattered with setae; intercoxal process narrowly rounded; ventrite 5, in males, mediavly slightly concave, posterior margin evenly rounded. **Aedeagus** (Fig. 1): Basal piece curved (lateral view); parameres straight basally, appearing as tridentate, length of lateral outgrowns nearly equal to total parameres length. **Female terminalia** (Fig. 3E, F): Ovipositor with paraprocts slightly longer than coxites. Paraproct does not shield valvifer and other lobes (directed basally). Valvifer wide and short; second lobe elongate; third one triangular (about 0.5 of length of third one); apical lobe rounded, situated dorsally, bearing reduced gonostylus on dorsal side. Proctiger covering nearly whole ovipositor. Vagina and bursa copulatrix without sclerites; bursa largely widened and curved. Spermatheca with narrow duct. Spiculum ventrale short.

FIGURE 3. Morphology of female and male terminalia of selected Blapstinina species. (A–C) *Lodinus punctulatus comb. nov.*, (D) *Lodinus araguai comb. nov.*, (E, F) *Blapstinus tibialis*. (A, B, E) ovipositor, (C, F) genital tubes, (D) parameres. **Abbreviations:** ag—accessory gland, b—hooked baculus of c4, c1–c4—subsequent lobes of coxites, g—gonostylus, sp—spermatheca, vag—vagina.
FIGURE 4. Distribution of Lodimus.
Note. In his unpublished PhD dissertation, Davis (1970) recognized a new species, “Blapstinus lobatus”, from Southern Texas. However, this species was never formally described and the name remains unavailable. This taxon also possesses tridentate parameres. Davis did not directly compare “B. lobatus” to types of *B. tibialis*, but instead based his diagnoses on a series of specimens that matched Champion’s description of *B. tibialis*. The authors of the present paper did not have access to specimens identified by Davis as “B. lobatus”, but were able to compare specimens from Southern Texas with tridentate parameres (see Additional Materials above) to images of syntypes of *B. tibialis*. No characters distinguishing these entities were found. Whether Davis’s species represents a sympatric species to *B. tibialis* in Southern Texas, or falls within morphological variation in *B. tibialis* requires further study and is outside the scope of this study. In any case, *B. tibialis* should be included in the fauna of the USA. A lectotype is not designated here in deference to a separate manuscript in preparation treating the concerned taxa.

Distribution. GUATEMALA, MEXICO, NICARAGUA (Champion 1885); CARIBBEAN (Bousqet *et al.* 2018); USA (TX) (present paper).

Acknowledgements

This research was funded by the OPUS 19 Project (number 2020/37/B/NZ8/02496) from the National Science Centre, Poland and the NSF ARTS program (DEB#s 1523605 and 2009247).

The authors would like to thank Keita Matsumoto (BMNH) and Max Barclay (BMNH) for sharing a photograph of the syntype of *Blapstinus tibialis*; Antoine Mantilleri (MNHN) for providing the access to type specimens of *Blapstinus punctulatus* and *Lodinus nigroaeneus*; Andrew Johnston (Arizona State University) and Maxim Nabozhenko (Russian Academy of Sciences) for their generous suggestions and feedback which benefited the manuscript greatly; Gustavo Flores (CONICET, Laboratorio de Entomología, Instituto Argentino de Investigaciones de las Zonas Áridas) for sharing species distribution records and taxon names for Argentina; Patrice Bouchard (Agriculture and Agri-Food Canada / Government of Canada) for his help interpreting some nomenclatural changes introduced in the manuscript.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. The USDA is an equal opportunity provider and employer.

References

Marcuzzi, G. (1951) Contributi alla conoscenza dei Tenebrionidi venezuelani (Coleoptera). Specie inedite del genere Blapstis-
Marcuzzi, G. (1954) Studies on the fauna of Curacao and other Caribbean Islands: no. 22. Tenebrionid beetles of Curacao,
Entomologica Hungarica, 44 (2), 239–269.
Naturales Musei Nationalis Hungarici, 78, 177–186.
trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 14 November
2010, 1–8. https://doi.org/10.1109/GCE.2010.5676129
and Evolution, 30 (5), 1188–1195. https://doi.org/10.1093/molbev/mst024
2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution,
37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.5962/bhl.title.2682
Peña, L.E. (1966) Catálogo de los Tenebrionidae (Coleoptera) de Chile. Entomologische Arbeiten aus dem Museum Georg Frey,
17, 397–453.
beck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.
Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
Schatz, I. (1994) Blapstinus desenderi sp. nov. from the Galapagos Islands (Ecuador) (Coleoptera, Tenebrionidae). Entomo-
fauna, 15, 417–424.
Solier, A.J. (1851) Insectos. Coleopteros. In: Historia física y politica de Chile segun documentos adquiridos en esta republica
durante doce años de residencia en ella y publicada bajo los auspicios del supremo gobierno por Claudio Gay. Zoologia.
1158 (1), 1–38. https://doi.org/10.11646/zootaxa.1158.1.1
22, 1–181.