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Abstract

The Lower Triassic fossil record of brittle stars is relatively rich, yet most records published to date are based on poorly
preserved or insufficiently known fossils. This hampers exhaustive morphological analyses, comparison with recent
relatives or inclusion of Early Triassic ophiuroid taxa in phylogenetic estimates. Here, we describe a new ophiuroid from
the Lower Triassic of Nevada, preserved as phosphatized skeletal parts and assigned to the new taxon Ophiosuperstes
praeparvus gen. et sp. nov Maxwell, V. & Pruss. S.B. This unusual preservation of the fossils allowed for acid-extraction
of an entire suite of dissociated skeletal parts, including lateral arm plates, ventral arm plates, vertebrae and various
disk plates, thus unlocking sufficient morphological information to explore the phylogenetic position of the new taxon.
Bayesian phylogenetic inference suggests a basalmost position of O. praeparvus within the Ophintegrida, sister to all other
sampled members of that superorder. The existence of coeval but more derived ophiuroids suggests that O. praeparvus
probably represents a member of a more ancient stem ophintegrid group persisting into the Early Triassic.
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The Late to Early Triassic was a pivotal interval in the evolution of marine communities (e.g. Brayard et al. 2017).
It witnessed the most extensive mass extinction event so far recorded in Earth history (Sepkoski 1981; Erwin 1993).
As a consequence, many of the surviving organismal clades are believed to have undergone a drastic bottleneck
followed by a post-extinction radiation (e.g. Twitchett & Oji 2005). However, our understanding of the evolutionary
change associated with the end-Permian mass extinction and the subsequent recovery directly depends on the
completeness of the fossil record available. In recent years, a number of new fossil discoveries have challenged
previous paradigms on faunal change around the Permian-Triassic boundary, including an unexpectedly rapid post-
Permian recovery of some marine groups (Brayard et al. 2017; Doguzhaeva et al. 2018; Botting et al. 2019; Brayard
et al. 2019b; Charbonnier et al. 2019; Romano et al. 2019; Saucede et al. 2019) and the previously unnoticed
survival of Paleozoic holdovers (Thuy et al. 2017; Thompson et al. 2018; Hagdorn 2018).

Ophiuroids, or brittle stars, are one of the five extant echinoderm classes to have survived the end-Permian
mass extinction. With respect to their Late to Early Triassic fossil record, they appear to be the best sampled of the
five classes, with more than 14 species known from around the boundary interval (Chen & McNamara 2006). A
critical re-evaluation of these fossil occurrences, however, debunked most of them as poor, based on insufficiently
preserved specimens and/or superficial descriptions, thus precluding their inclusion in phylogenetic analyses (Thuy
et al. 2019). In fact, for an ophiuroid fossil to be available for phylogenetic studies, it has to be known in sufficient
detail to allow comparison with recent relatives (Thuy & Stohr 2016). The lack of phylogenetically informative
ophiuroid fossils from the Late to Early Triassic is particularly unfortunate because the current consensus on the
evolution of the class indicates a mid-Permian origin for the crown-group Ophiuroidea followed by a rapid radiation
of the major extant clades (O’Hara et al., 2014, 2017; Thuy & Stohr 2016, 2018).

Here, we describe new ophiuroid fossils from the Lower Triassic of Nevada (Fig. 1). The extraordinary
preservation of the fossils, involving replacement of the original skeletal calcite by calcium phosphate (apatite),

Accepted by C. Mah: 15 Oct. 2021, published: 24 Nov. 2021 369

Licensed under Creative Commons Attribution-N.C. 4.0 International https://creativecommons.org/licenses/by-nc/4.0/


mailto:vmaxwell@smith.edu
https://orcid.org/0000-0002-2597-0498
mailto:spruss@smith.edu
https://orcid.org/0000-0003-1751-2697
mailto:bthuy@mnhn.lu
https://orcid.org/0000-0001-8231-9565

allowed for acid-extraction of an entire suite of dissociated skeletal plates from limestone, unlocking sufficient
morphological information to allow inclusion of the new ophiuroid in a phylogenetic analysis.
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FIGURE 1: Locality map of the Virgin Limestone Member at the Lost Cabin Springs Locality, Southern Nevada, Western
United States (36°4'57.18'N, 115°39'12.05'W is near the base of the section). (modified from Maxwell, 2020).

Geological Context

During the Early Triassic, the western United States was situated at a tropical paleolatitude (Reif & Slatt, 1979).
The Lower Triassic Moenkopi Formation extends throughout the Colorado Plateau and into southern Nevada and
its depositional environment gradually shifts from continental fluvial sedimentation in Arizona to more intertidal
and shallow marine environments in Utah and Nevada (Reif & Slatt, 1979). The Moenkopi Formation in southern
Nevada was deposited in a shallow water setting on the eastern margin of the Panthalassa sea (Marzolf, 1993) (Fig.
2). The non-marine Timpoweap Member or the Lower Red Member is overlain by the Virgin Limestone Member,
which is in turn overlain by the evaporitic Shnabkaib Member (Reif & Slatt, 1979). The Virgin Limestone Member
of'the Moenkopi Formation is a mixed carbonate-siliciclastic succession (Poborski, 1953). At the Lost Cabin Springs
locality, it is constrained to the Spathian Stage (late Early Triassic) (Poborski, 1953) and was deposited in a storm-
dominated subtidal paleoenvironment (Schubert & Bottjer, 1995; Pruss et al., 2005). There is an abundance of
unusual facies present in the Virgin Limestone Member, including microbialite facies, such as large microbial reef
mounds that span the length of the Lost Cabin Springs outcrop area (Pruss & Bottjer, 2004), wrinkle structures (Pruss
et al., 2004), and flat-pebble conglomerate facies (Pruss et al., 2005). Of eight fossiliferous samples, ophiuroids
were only present in Bed LC-18-34 (Maxwell ef al., 2020). Approximately 115 meters from the base, this bed is a
thin 3.5 m-thick fossiliferous packstone with isolated crinoidal ossicles overlying a small microbial build-up.

Material and Methods

In 2018 and 2019, samples of fossiliferous packstone were collected and dissolved in 200 — 400 ml of 10% glacial
acetic acid solution buffered with ammonium acetate, and only one sample (LC—18-34) produced abundant ophiuroid
fragments. The insoluble residues were sieved into the following size fractions: >400 um, >250 um and >177 pum,
and the ophiuroid elements were common components of the >400 um and >250 um fractions. The sieved samples
were examined under the Nikon SMZ645 stereoscopic microscope, and an Olympus BHS BH-2 light microscope
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was used to image these fossils. The best preserved ophiuroid elements (n=71) were coated with gold and palladium
by a Hummer V Sputter coater and imaged with the FEI Quanta 450 Scanning Electron Microscope (SEM) at Smith
College and with the Jeol Neoscope IMC-5000 SEM at the Natural History Museum Luxembourg. The elemental
composition of the fossils was analyzed using EDS (Energy Dispersive Spectroscopy) Team software at Smith
College.
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FIGURE 2: Early Triassic paleogeographic reconstruction of the western US. The Lost Cabin Springs Locality is denoted with
a green star and the various shades depict the depositional environment during the Early Triassic (modified from Hoffmann et
al.,2013).

Specimens here included were deposited in the collections of the Natural History Museum (MnhnL OPH) and
the Muschelkalkmuseum Ingelfingen (MHI).

Theterminology used herein follows Stohr ez al. (2012) and Thuy & Stohr (2011, 2016). We adopt the classification
proposed by O‘Hara et al. (2017, 2018). The extreme fragility of the skeletal plates, however, precluded detachment
and re-mounting of the lateral arm plates. As a result, we were unable to illustrate the external and internal sides of
the same lateral arm plates using scanning electron microscopy, as is a common practice in ophiuroid descriptions
(Thuy & Numberger-Thuy 2021).

We scored the skeletal plates following Thuy & Stohr (2016, 2018), referring to the same character definitions
and acronyms and using the character matrix elaborated by Thuy & Stohr (2016) and modified by Thuy & Stohr
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(2018) but excluding Inexpectacantha acrobatica Thuy, 2005 because of its ambiguous taxonomic affinities (Thuy
& Numberger-Thuy 2021). The character matrix including the scores of the ophiuroid material described in the
present paper is shown in Table 1. Bayesian inference analysis was performed using MrBayes (Huelsenbeck &
Ronquist 2001) which relies on a modified version of the Juke-Cantor model for morphological data as outlined
by Lewis (2001), with variable character states from 2 to 10 (Wright & Hillis 2014). Only variable characters were
sampled, and we compensated for character selection bias by letting MrBayes search for parsimony informative
characters (Mkpars model) (Wright & Hillis 2014). All character states were assumed to have equal frequency,
and prior probabilities were equal for all trees. We assumed that evolutionary rates vary between sites according
to a discrete gamma distribution. Average standard deviations of split frequencies stabilized at about 0.008 after 3
million generations (mgen), sampled every 1,000 generations. The first 25% of the trees were discarded as burnin.
The consensus trees were examined with the software FigTree v. 1.4.2 by Rambaut (http://tree.bio.ed.ac.uk/software/
figtree/). Confidence intervals of 95-99% were regarded as strong support for a node to be true, and at least 90%
probability as good support.

Results

Preservation of the ophiuroid remains

The ophiuroid fragments described herein were found in insoluble residues of one packstone sample (LC—-18—
34). The insoluble residues from this sample were dominated by ophiuroid fragments with very few other fossils
preserved. The most abundant fragments in this sample were vertebrae, which were brown to amber in color. These
were all likely preserved as stereomic molds, with minerals infilling and replacing parts of the skeletal elements, so
the stereomic structure is well preserved and visible in SEM imagery.

Phylogenetic analysis

The Bayesian estimate resulted in a well-resolved tree (Fig. 3) with good support for most of the clades. The ophiuroid
taxon described herein (Ophiosuperstes praeparvus gen. et sp. nov.) holds a basal position in the tree, sister to the
Ophintegrida clade. This node gains high posterior probability (96 %), suggesting a robust phylogenetic relationship.
The Ophintegrida clade is almost fully resolved, including a basal split into an Ophiacanthida-Ophioscolecida clade
(but including the Ophioleucida) and an Amphilepidida clade. The other Triassic ophiuroid included in the tree,
Aplocoma agassizi, holds a more derived position than Ophiosuperstes praeparvus, being situated at the base of the
Ophiodermatina.

Systematic palaeontology

Class Ophiuroidea Gray, 1840

Subclass Myophiurida Matsumoto, 1915

Infraclass Metophiurida Matsumto, 1913

Superorder Ophintegrida O’Hara, Hugall, Thuy, Stohr & Martynov, 2017

Order unknown

Family unknown

Genus Ophiosuperstes nov.
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Etymology. Ophiosuperstes n. gen. is derived from the Latin adjective superstes meaning survivor, referring to the
occurrence in the aftermath of the end-Permian mass extinction. Gender masculine.

Type and only species. Ophiosuperstes praeparvus sp. nov.

Diagnosis. as for the species, by monotypy.

Aganaster gregarius
Ophiomusa lymani -
Amphilepis norvegica
Amphilimna olivacea
0 00 Ampbhioplus congensis
82 Amphiura chiajei
Ophiopsila guineensis
Histampica duplicata
Ophiactis savignyi
700 Ophiopholis aculeata
% L———— Ophiothrix fragilis
Ophienigma spinilimbatum
Ophiochiton fastigatus
. 87Ophiodoris malignus
100 98 Ophionereis porrecta
Ophioplax lamellosa
Hemieuryale pustulata
50 100 ’S};gsbgia murrhina 'Oo
54 Ophiolepis superba 5
Ophiozonella longispina 5
—1 =6 — Aplocoma gassizi -
77 52 Ophiarachna incrassata 8
99 Ophiocoma echinata =
Ophiomyxa pentagona Q
Eirenura papillata
91 ﬂhiomyces delata
94 Ophiotholia spathifer
:99 Ophioleuce seminudum
9 Ophiopallas paradoxa
69Ophiacantha bidentata
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FIGURE 3: Morphology-based phylogenetic tree inferred using MrBayes, showing the position of Ophiosuperstes praeparvus

gen. et sp. nov. (marked in bold). Numbers at nodes indicate posterior probabilities.

Ophiosuperstes praeparvus gen. et sp. nov.
Figs. 4-5

Etymology. praeparvus is Latin for very small or minute, as these microfossils were extracted from a small shelly

fossil-style assemblage.

Holotype. MnhnL OPH177

Paratypes. MnhnL OPH178 — 190

Type locality. Lost Cabin Springs locality, southern Nevada (Maxwell et al. 2020).

Type stratum. Bed LC—-18-34 within the Virgin Limestone Member of the Moenkopi Formation, Spathian,
lower Triassic.

Diagnosis. Ophintegrid ophiuroid with stout lateral arm plates of rounded outline, very weak oblique elongated
spur on ventro-proximal tip of outer surface, otherwise devoid of spurs or conspicuous outer surface ornamentation;
with up to six small, vertical spine articulations slightly sunken into distal edge of lateral arm plate, composed
of arched, shifted dorsal and ventral lobes merged at their proximal tips and encompassing the muscle and nerve
openings; no sigmoidal fold; tentacle openings developed as small notches lined by a shallow groove in proximal
to median lateral arm plates, and reduced to a within-plate perforation in distal lateral arm plates; ventral arm plates
trapezoid; radial shields rounded isosceles triangular, without extensions or incisions.
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FIGURE 4: Dissociated arm plates of the ophiuroid Ophiosuperstes praeparvus gen. et sp. nov., from the Virgin Limestone
Member of the Moenkopi Formation, Spathian, lower Triassic, Lost Cabin Springs locality, southern Nevada. A—B: holotype
(OPH177), proximal lateral arm plate in external view (A) and with detail of spine articulations (B). C—D: paratype (OPH178),
median lateral arm plate in external view (C) and with detail of spine articulations (D). E: paratype (OPH179), median lateral
arm plate in internal view. F: paratype (OPH181), distal lateral arm plate in external view. G: paratype (OPH180), median lateral
arm plate in internal view. H: paratype (OPH182), proximal ventral arm plate in external view. I: paratype (OPH183), median
to distal ventral arm plate in external view. J: paratype (OPH184), proximal vertebra in distal view. K: paratype (OPH185),
proximal vertebra in ventral view. L: paratype (OPH186), median vertebra in lateral view. M: paratype (OPH187), median
vertebra in dorso-distal view. Abbreviations: AS: articular structure; di: distal; DL: dorsal lobe; do: dorsal; MO: muscle opening;
NO: nerve opening; pr: proximal; PB: podial basin; SA: spine articulations; TO: tentacle opening; VAR: vertebral articular
ridge; VF: ventral furrow; VL: ventral lobe; ZC: zygocondyle; ZS: zygosphene. All scale bars equal 0.2 mm.
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FIGURE 5: Dissociated disc plates of the ophiuroid Ophiosuperstes praeparvus gen. et sp. nov., from the Virgin Limestone
Member of the Moenkopi Formation, Spathian, lower Triassic, Lost Cabin Springs locality, southern Nevada. A: paratype
(OPH188), oral plate in abradial view. B: paratype (OPH189), radial shield in external view, with outline of missing proximal
tip reconstructed using a dashed grey line. C: paratype (OPH190) adradial genital plate in dorsal view. Abbreviations: AMF:
abradial muscle fossa; do: dorsal; LG: longitudinal groove; pr: proximal. All scale bars equal 0.2 mm.

Description of holotype. MnhnL OPH177 is a dissociated proximal lateral arm plate of stout, rounded outline,
approximately two times higher than long, with rounded dorsal and distal edges and protruding ventro-proximal
portion; outer proximal edge evenly concave, lined by a relatively broad but poorly defined band of slightly more
coarsely meshed stereom with a faint horizontal striation but without spurs other than a very weak oblique elongated
spur on the ventro-proximal tip of the outer surface (Fig. 4A); outer surface devoid of constriction, covered by a
relatively finely meshed stereom with trabecular intersections transformed into very small tubercles; five relatively
small, equal-sized spine articulations along the distal edge, with a slight dorsalward increase in the size of the gaps
between the spine articulations, at the same level as the outer surface stereom; spine articulations (Fig. 4B) almost
vertical, composed of arched and slightly shifted dorsal and ventral lobes encompassing a small muscle opening and
a slightly smaller nerve opening; ventral edge with a small but well developed tentacle notch, lined by a shallow,
poorly defined groove; inner side of lateral arm plate (not figured) with a large, well-defined, single vertebral
articular ridge composed of the same stereom as the remaining inner side; inner distal edge without spurs; small but
clearly defined tentacle notch; no perforations discernible.

Paratype supplements and variation.

Lateral arm plates: median lateral arm plates (MnhnL OPH178 — OPH180) similar to holotype with respect to
general outline, outer surface stereom (Fig. 4C), outer proximal edge, shape and position of spine articulations
(Fig. 4D) and morphology of inner side (Fig. 4E, G) but with lower height/length ratio, fewer spine articulations
(three to four) and smaller tentacle notch. Distal lateral arm plate (MnhnL OPH181) longer than high, of rounded
rectangular outline with straight dorsal and ventral edges, with three closely-spaced spine articulations and with
tentacle openings developed as within-plate perforation close to ventralmost spine articulation (Fig. 4F).

Vertebrae (MnhnL OPH184 — 187) roughly disc-shaped (proximal vertebrae, Fig. 4], K) to cylindrical (median
and distal vertebrae, Fig. 4L, M), with concave lateral saddle showing a single, tongue-shaped articular surface (Fig.
4L) with the lateral arm plate; large, straight dorsal muscle fossae and much smaller, straight ventral ones; distal
face with dorsalwards converging zygocondyles and with a small zygosphene protruding only very little beyond the
ventral edge of the zygocondyles (Fig. 4)); deep and broad ventral furrow with small podial basins (Fig. 4K).

Ventral arm plates (MnhnL OPH182 — 183) trapezoid, with weakly convex distal edge, concave lateral edges
and narrower, rectangular proximal portion (Fig. 4H, I); no spurs or conspicuous outer surface ornamentation.

Oral plate (MnhnL OPH188) longer than high, slender, fragile, with abradial muscle fossa developed as central
depression (Fig. 5SA) and small adradial muscle attachment area lining ventral edge of adradio-distal articular
surface.
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Radial shield (MnhnL OPH189) with proximal portion broken, rounded isosceles triangular in extrapolated
outline (Fig. 5B), no signs of extensions or incisions.

Adradial genital plate (MnhnL OPH190) bar-like, with a longitudinal groove and a swollen distal end (Fig.
50).

Remarks. The ophiuroid remains described in the present paper include various types of skeletal components,
i.e. lateral and ventral arm plates, vertebrae, oral plates, genital plates and fragmentary radial shields. The ossicles
of every component type show very little variation other than the changes depending on the position within the
arm (e.g. Thuy & Stohr 2011). In particular, the lateral arm plates all belong to the same species, as indicated by
the similarities in plate proportions, outer surface ornamentation, spine articulation morphology and position, and
vertebral articular structure morphology (Thuy & Stohr 2011). Furthermore, the various types of ossicles are of
compatible size and, in some cases, show corresponding articulation surfaces, e.g. the vertebral articular ridge on
the inner side of the lateral arm plates matching the lateral articular ridge of the vertebrae. We therefore conclude
that all the ophiuroid remains belong to the same species.

The spine articulations of the lateral arm plates described in the present paper are composed of small muscle
and nerve openings encompassed by a ventral and dorsal lobe. This configuration precludes assignment to the
Euryophiurida, whose spine articulations lack dorsal and ventral lobes and have the muscle and nerve openings
separated by a vertical ridge (O’Hara et al, 2018), and instead suggests assignment to the Ophintegrida. Within
that superorder, affinities are not clear-cut because the lateral arm plates and the other skeletal parts lack characters
that are uniquely found in one of the orders. This observation is in line with our phylogenetic estimate in which the
ophiuroid described herein holds a basalmost position at the stem of the Ophintegrida.

Comparison with other fossil ophiuroids is hampered by the lack of detailed morphological analyses. Most
descriptions of Triassic ophiuroids published to date are superficial and poorly illustrated, omitting important
characters such as lateral arm plate microstructures that have been identified as systematically relevant (e.g. Thuy
& Stohr 2016; O’Hara et al. 2018). Praeaplocoma hessi Broglio Loriga & Berti Cavicchi, 1972 from the lower
Triassic of Italy shares some superficial similarities with the ophiuroid described herein, in particular regarding the
outline of the radial shields and the shape of the ventral arm plates. The lateral arm plates of P. hessi, however, are
bulging. The most important difference, however, was revealed by scanning electron microscopy of newly collected
specimens from the Dolomites, close to the type area of the species (Twitchett ez al. 2005), showing that the spine
articulations of P. hessi lack dorsal and ventral lobes and instead have their muscle and nerve openings separated by
a vertical ridge (Fig. 6). This observation places Praeaplocoma in the superorder Euryophiurida and allows a clear
distinction from the ophiuroid described herein.

TO
LAP

FIGURE 6: Arm fragment of Praeaplocoma hessi Broglio Loriga & Berti Cavicchi, 1972, (MHI 1307/nnn) from the Werfen
Formation, Lower Triassic, of Weilhorn, Italy. A: arm fragments in ventral view. B: detail of part marked by white rectangle
in A. Abbreviations: AS: arm spine; di: distal; LAP: lateral arm plate; MO: muscle opening; NO: nerve opening; SA: spine
articulation; TO: tentacle opening; TS: tentacle scale; VAP: ventral arm plate. All scale bars equal 0.2 mm. Arrow in A indicates
direction of view shown in B; refer to tentacle scales (TS) for better correspondence between A and B.
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Shoshonura brayardi Thuy, 2019 from the lower Triassic of Idaho is another confirmed basal member of the
Ophintegrida. It differs from the ophiuroid described herein in the more bulging lateral arm plates and the deeper
tentacle notches of the ventral arm plates. Furthermore, the spine articulations are typical of the ophintegrid order
Ophiacanthida. Arenorbis squamosus (Picard, 1858) from the middle Triassic of central Europe has lateral arm plates
with several spurs along the outer proximal edge, and a slightly raised distal portion with larger, unambiguously
ophiodermatid-like spine articulations.

Closest similarities are shared with the middle to upper Triassic genus Aplocoma d’Orbigny, 1852, in particular
with respect to the shape of the lateral arm plates. In contrast to the ophiuroid described herein, however, Aplocoma
has parallel rather than dorsalward converging zygocondyles on the distal vertebral articulations, ventral arm plates
with a pointed rather than straight proximal edge, lateral arm plates with a ventralwards protruding ventro-distal
tip and an outer proximal edge with spurs but lacking a fine horizontal striation, and spine articulations that are
oblique rather than vertical and that have a weakly developed sigmoidal fold. These characters not only differentiate
Aplocoma from the ophiuroid described herein but also suggest a more derived position of that genus within the
Ophintegrida. Our phylogeny corroborates this assumption and places the type species of Aplocoma, A. agassizi, at
the stem of the order Ophiodermatida, albeit with low support.

Because the ophiuroid described herein differs from all other unambiguously diagnosed fossil ophiuroids, we
assign it to the new genus and species Ophiosuperstes praeparvus. For the time being, we prefer to eclipse the
numerous poorly diagnosed lower Triassic ophiuroid taxa (e.g. Detre & Mihaly 1987; Chen ef al. 2004; Chen &
McNamara 2006), because the morphological information available for these taxa is too superficial for a meaningful
comparison. A detailed re-evaluation taking into account recent progress in ophiuroid systematics is necessary
in order to determine whether the respective type specimens yield sufficient morphological information for an
unambiguous diagnosis. Therefore, rather than extrapolating or perpetuating these questionable taxa, we prefer to
introduce a new, unambiguously diagnosed taxon as a basis for future comparison.

Discussion

The results of the phylogenetic estimate suggest that Ophiosuperstes praeparvus gen. et sp. nov. holds a basalmost
position within the Ophintegrida, which is one of the two superorders of the living Ophiuroidea (O’Hara et al. 2017,
2018). For a long time, the basal radiation of the modern ophiuroids was supposed to have taken place in the Early
Triassic, following an extreme bottleneck at the end-Permian mass extinction (e.g. Smith ez al. 1995). Molecular
and palaecontological data published in recent years, however, show that the diversification of the modern ophiuroids
was well under way long before the end-Permian mass extinction (e.g. O’Hara et al. 2014, 2017; Thuy et al. 2015,
2019). The existence of coeval but more derived ophiuroids such as Shoshonura brayardi Thuy, 2019 suggests that
Ophiosuperstes praeparvus gen. et sp. nov. is probably a persisting member of a more ancient stem ophintegrid
group.

The discovery of Ophiosuperstes praeparvus gen. et sp. nov. was only possible thanks to the highly unusual
preservation of'its fossils. In fact, elemental composition analysis using EDS confirmed that the skeletal elements are
composed of calcium phosphate, implying that the original high-Mg calcite of the ophiuroid skeleton was completely
replaced by apatite. Thanks to phosphatization, the ophiuroid ossicles were left unscathed by the dissolution of the
hard, fossiliferous limestone. There has been some debate surrounding the mechanisms behind phosphatization
during this time period, in particular phosphogenesis driven by high-energy mixing events (Freeman et al. 2013;
Milam et al. 2017) versus phosphatization occurring in beds with low sedimentation rates and/or sedimentary
hiatuses (Freeman et al. 2019,). Maxwell et al. (2020) observed a link between small shell size and phosphatization,
and suggest phosphatization resulted from the combination of warm pore water with low levels of oxygen and the
small particle size of the ophiuroid fragments.

Generally, the original high-Mg calcite of echinoderm ossicles recrystallizes into low-Mg calcite during
diagenesis, filling the stereom pores and transforming the original porous ossicle into a massive calcite crystal
(Gorzelak et al. 2016). The fact that stereom pores are preserved to the finest detail even inside the skeletal plates
suggests either that phosphatization took place before calcite recrystallisation, or that recrystallisation exceptionally
led to a perfect textural stereom preservation. This is in line with previous reports of phosphatized echinoderms,
where excellent stereom preservation prevailed (Pisera 1994; Svensson 1999). To our knowledge, this is the first
case of an unambiguous phosphatized ophiuroid.
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