Two new earthworm species of the genus Amynthas (Oligochaeta: Megascolecidae) from central Taiwan, with comments on some recent species assignments in Amynthas and Metaphire

HUEI-PING SHEN ${ }^{1}$, CHIH-HAN CHANG ${ }^{2,3}$ \& WEN-JAY CHIH ${ }^{2}$
${ }^{1}$ Zoology Division, Endemic Species Research Institute, 1 Ming-shen East Road, Jiji, Nantou 552, Taiwan
${ }^{2}$ Department of Life Science, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
${ }^{3}$ Corresponding author. E-mail: chihhanchang@ntu.edu.tw, Tel: 886-2-33662456, Fax: 886-2-23636837

Abstract

This study describes two new species of earthworms belonging to the genus Amynthas (Oligochaeta: Megascolecidae) from central Taiwan. They are named Amynthas luridus sp. nov. and Amynthas ruiyenensis sp. nov. Both species are octothecal with the former found at elevations of $1500-2300 \mathrm{~m}$ and the latter at an elevation of 2200 m from the Central Mountain Range. In addition, DNA barcodes are made available for the first time for the following species: Amynthas catenus Tsai et al., 2001, Amynthas exiguus aquilonius Tsai et al., 2001, Amynthas proasacceus Tsai et al., 2001, Amynthas hohuanmontis Tsai et al., 2002, Amynthas tessellatus Shen et al., 2002, Amynthas fenestrus Shen et al., 2003, Amynthas tantulus Shen et al., 2003, and Amynthas uvaglandularis Shen et al., 2003. Furthermore, Amynthas exiguus ssp. aquilonius Tsai et al., 2001 distributed at elevations of $2200-3000 \mathrm{~m}$ in the Central Mountain Range is elevated to species level, as A. aquilonius Tsai et al., 2001. The highest altitude record so far for the exotic Eukerria saltensis (Beddard, 1895) in Taiwan, 2200 m above sea level, is documented. Moreover, some recent assignments of species to Amynthas and Metaphire and synonymies of names are critically discussed. It is argued that idiosyncratic genus concepts, inadequate species comparisons, and unexplained synonymies should be avoided. A hitherto undetected and possibly monophyletic species group of mainly Korean Amynthas species in the A. tokioensis-group is indicated, characterized by numerous genital papillae around each spermathecal pore and male porophore, large ampullae, long diverticula, large prostate glands, and manicate intestinal caeca. The names A. bimaculata, A. silvatica and A. surcata (Ishizuka, 1999), as well as A. odaesanensis, A. righii, A. fasciiformis, and A. sanchongensis Hong \& James, 2001, previously declared as junior synonyms of A. tappensis (Ohfuchi, 1935), are revalidated.

Key words: Earthworms, Clitellata, Amynthas, new species, Taiwan

Introduction

A total of 19 new species and subspecies of earthworms have been reported from central Taiwan since 1999 (Tsai et al. 1999, 2000, 2001, 2002, 2004b, 2007; Shen et al. 2002, 2003). Among them, Metaphire taiwanensis Tsai et al., 2004 with a live body length of 860 mm is the largest earthworm ever found from the island of Taiwan. Tsai et al. (2004a) categorized these earthworms into five groups based on their altitudinal distributions. Since then, the categories of Tsai et al. (2004a) have been supported and supplemented with additional data (Shen 2018 and this study), and can be updated as follows:
(1) Species widely distributed from the hills to the high mountains, including Amynthas wulinensis Tsai et al., 2001 at elevations of 850-3200 m, Amynthas tessellatus Shen et al., 2002 at elevations of 700-3200 m and Metaphire bununa Tsai et al., 2000 at elevations of 300-3000 m.
(2) Species distributed in the high mountains, containing Amynthas hohuanmontis Tsai et al., 2002 occurring at Mt. Hohuan (3000 m) only, Amynthas catenus Tsai et al., 2001 and Amynthas exiguus aquilonius Tsai et al., 2001 at elevations of 2200-3000 m, Amynthas proasacceus Tsai et al., 2001 at elevations of 2100-3000 m, and Amynthas uvaglandularis Shen et al., 2003 at elevations of 1800-3000 m.
(3) Species distributed at elevations of 1800-2300 m, consisting of Amynthas wangi Shen et al., 2003 at an elevation of 2300 m only, Amynthas tantulus Shen et al., 2003 at elevations of 2200-2300 m, Amynthas fenestrus Shen et al., 2003 at elevations of 1800-2300 m, and M. taiwanensis at elevations of 1800-2100 m.
(4) Species distributed at elevations of 140-2225 m, comprising Amynthas tungpuensis Tsai et al., 1999 at elevations of 140-2225 m [Note: A. tungpuensis can reach an elevation up to 2737 m in southern Taiwan (Shen et al. 2016)], Amynthas nanshanensis Shen et al., 2003 at elevations of 800-1800 m, Amynthas penpuensis Shen et al., 2003 at elevations of 200-1700 m [Note: A. penpuensis can reach an elevation up to 2000 m in southern Taiwan (unpublished data)], and Amynthas bilineatus Tsai \& Shen, 2007 at an elevation of 1000 m only.
(5) Species distributed at elevations below 1000 m , encompassing Amynthas binoculatus Tsai et al., 1999 and Amynthas sexpectatus Tsai et al., 1999.

Also, it is worth mentioning that A. tessellatus has two distinct subspecies, A. t. tessellatus and A. t. paucus, with the former found at elevations of $1000-3200 \mathrm{~m}$ and the latter at elevations of $700-1100 \mathrm{~m}$ (Shen et al. 2002). A. t. tessellatus has genital papillae associated with sessile accessory glands, whereas A. t. paucus has genital papillae with stalked accessory glands. Apparently, the "backbone" of the island of Taiwan, the Central Mountain Range, provides the evolutionary theater for the speciation of these earthworms. In addition, A. catenus, A. proasacceus, A. hohuanmontis and A. tungpuensis have variable numbers of spermathecae, and A. bilineatus even lacks spermathecae entirely. Therefore, with the discovery of these species, the limitation of using the number and position of spermathecae as keys to define species-groups in pheretimoid earthworms by Sims and Easton (1972) has become obvious (Shen et al. 2012). Furthermore, A. catenus and A. hohuanmontis were proved to be automictic (meiotic) parthenogens (Shen et al. 2012), while the former is polyploid with ploidy levels corresponding to the degree of degeneration of its reproductive organs (Shen et al. 2011). All these findings broaden our knowledge of the biodiversity of the earthworm fauna in Taiwan.

Earthworm specimens collected from central Taiwan prior to 2005 were preserved in formalin and not available for DNA sequencing. Fresh specimens were obtained in subsequent collections and DNA barcodes of A. wulinensis were reported in Chang et al. (2007), those of A. binoculatus, M. bununa and M. taiwanensis in Chang et al. (2008), and those of A. penpuensis and A. tungpuensis in Shen et al. (2014) and in Shen et al. (2016), respectively. This study describes two new species, Amynthas luridus sp. nov. and Amynthas ruiyenensis sp. nov., from central Taiwan. Both species are octothecal with the former found from elevations of $1500-2300 \mathrm{~m}$ and the latter at an elevation of 2200 m from the Central Mountain Range. Except for PCR failure of the type specimen of A. ruiyenensis, DNA barcodes (a 658-base-pair section of the mitochondrial cytochrome c oxidase subunit I gene) are reported here from type specimens of A. luridus and from fresh material of A. catenus, A. exiguus aquilonius, A. proasacceus, A. hohuanmontis, A. tessellatus, A. fenestrus, A. tantulus, and A. uvaglandularis (Table 1). DNA barcodes of these species are made available for the first time. As for A. bilineatus, A. nanshanensis and A. wangi, no fresh material was acquired.

Amynthas exiguus aquilonius was considered a geographical subspecies north of Amynthas exiguus exiguus (Gates, 1930), as compared to another subspecies Amynthas exiguus austrinus (Gates, 1932) located to the south of A. e. exiguus (Tsai et al. 2001). Characters of the three taxa were compared in Tsai et al. (2001). Besides the lower setal numbers, much shorter diverticula, and the small, widely paired presetal and/or postsetal papillae in both preclitellar and postclitellar regions which separate A. e. aquilonius from the other two taxa (Tsai et al. 2001), the position of first dorsal pore in 6/7 of A. e. aquilonius also shows considerable difference from that in $12 / 13$ of both A. e. exiguus and A. e. austrinus. Moreover, as mentioned previously, A. e. aquilonius is distributed at elevations of 2200-3000 m in the Central Mountain Range, Taiwan, while A. e. exiguus is found from lowlands to about $1219 \mathrm{~m}[=4000$ feet (Gates 1972)] and A. e. austrinus from lowlands to about 335 m [= 1100 feet (Gates 1972)] in Myanmar, Thailand and Vietnam (Gates 1972; Nguyen et al. 2016b, 2017). It is evident that A. e. aquilonius is originated from within-island speciation. Accordingly, A. e. aquilonius should be elevated to species level, namely, A. aquilonius.

The exotic earthworm Eukerria saltensis (Beddard, 1895) was first collected from Nantou County, central Taiwan in 1999 (Shen et al. 2008). It was recorded from an elevation of 228 m from Yunlin County, southwestern Taiwan and an elevation of 1770 m from the Taipingshan National Forest Recreation Area, Ilan County, northeastern Taiwan as well (Shen et al. 2008). E. saltensis was found at an elevation of 2200 m from Ruiyen Creek Nature Reserve, Nantou County in 2009 (unpublished data). So far, it is the highest altitude record for this species in Taiwan.

Compared with the exotic Pontoscolex corethrurus (Müller, 1856) dominant in Taiwan from coastal plains to an elevation up to about 1000 m, E. saltensis seems to be even more adapted to the diverse local climate and environment here in Taiwan.

TABLE 1. GenBank accession numbers of COI sequences of specimens reported in this study.

Species	Locality	Voucher no.	GenBank accession no.
Amynthas aquilonius Tsai et al., 2001	Ruiyen Creek Nature Reserve, Nantou County ${ }^{2}$	RY003	MK251475
Amynthas aquilonius Tsai et al., 2001	Ruiyen Creek Nature Reserve, Nantou County ${ }^{2}$	RY004	MK251476
Amynthas aquilonius Tsai et al., 2001	Ruiyen Creek Nature Reserve, Nantou County ${ }^{2}$	RY005	MK251477
Amynthas aquilonius Tsai et al., 2001	Ruiyen Creek Nature Reserve, Nantou County ${ }^{2}$	RY006	MK251478
Amynthas aquilonius Tsai et al., 2001	Ruiyen Creek Nature Reserve, Nantou County ${ }^{2}$	RY007	MK251479
Amynthas aquilonius Tsai et al., 2001	Ruiyen Creek Nature Reserve, Nantou County ${ }^{2}$	RY008	MK251480
Amynthas aquilonius Tsai et al., 2001	Ruiyen Creek Nature Reserve, Nantou County ${ }^{2}$	RY009	MK251481
Amynthas catenus Tsai et al., 2001	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	Cat1	MK251482
Amynthas catenus Tsai et al., 2001	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	Cat2	MK251483
Amynthas catenus Tsai et al., 2001	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	Cat5	MK251484
Amynthas catenus Tsai et al., 2001	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	Cat6	MK251485
Amynthas catenus Tsai et al., 2001	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	Cat8	MK251486
Amynthyas fenestrus Shen et al., 2003	Ruiyen Creek Nature Reserve, Nantou County ${ }^{1}$	RY010	MK251487
Amynthyas fenestrus Shen et al., 2003	Ruiyen Creek Nature Reserve, Nantou County ${ }^{1}$	RY011	MK251488
Amynthas hohuanmontis Tsai et al., 2002	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	HH1	MK251489
Amynthas hohuanmontis Tsai et al., 2002	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	HH2	MK251490
Amynthas hohuanmontis Tsai et al., 2002	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	HH7	MK251491
Amynthas hohuanmontis Tsai et al., 2002	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	HH9	MK251492
Amynthas luridus sp. nov.	Ruiyen Creek Nature Reserve, Nantou County ${ }^{1}$	RY018	MK251502
Amynthas luridus sp. nov.	Ruiyen Creek Nature Reserve, Nantou County ${ }^{1}$	RY020	MK251503
Amynthas luridus sp. nov.	Ruiyen Creek Nature Reserve, Nantou County ${ }^{1}$	RY021	MK251504
Amynthas proasacceus Tsai et al., 2001	Mt. Hohuan, borders of Hualien and Nantou counties ${ }^{1}$	pro	MK251495
Amynthas proasacceus Tsai et al., 2001	Road 8, Nantou County	East434	MK251496
Amynthas tantulus Shen et al., 2003	Ruiyen Creek Nature Reserve, Nantou County ${ }^{1}$	RY012	MK251497
Amynthas tantulus Shen et al., 2003	Ruiyen Creek Nature Reserve, Nantou County ${ }^{1}$	RY013	MK251498
Amynthas tessellatus Shen et al., 2002	Mt. Hohuan, borders of Hualien and Nantou counties	tes5	MK251499
Amynthas tessellatus Shen et al., 2002	Mt. Hohuan (East Peak), borders of Hualien and Nantou counties	tes6	MK251500
Amynthas tessellatus Shen et al., 2002	Sunlinksea Forest Recreation Area, Nantou County	tes7	MK251501
Amynthas uvaglandularis Shen et al., 2003	Meifong, Nantou County	uva2	MK251493
Amynthas uvaglandularis Shen et al., 2003	Mt. Hohuan, borders of Hualien and Nantou counties	uva5	MK251494

[^0]
Material and methods

Earthworms were collected during 2005-2016 from central Taiwan. They were anesthetized in 10\% ethyl alcohol and then preserved in 95% ethyl alcohol, and investigated with a stereoscopic microscope and dissected dorsally. A subset of the specimens of A. aquilonius, A. catenus, A. fenestrus, A. hohuanmontis, A. proasacceus, A. tantulus, A. tessellatus, A. uvaglandularis and the two new species were selected for molecular analysis (Table 1). Muscle tissues were taken from the posterior 10-20 segments of these specimens and then preserved in 95% ethyl alcohol at $-20^{\circ} \mathrm{C}$. DNA extraction was conducted using the Tissue Genomic DNA Extraction Mini Kit (Favorgen Biotec, Pingtung, Taiwan). Polymerase chain reaction for COI was carried out using the primers LCO1490 and HCO2198 (Folmer et al. 1994) in a $50-\mu \mathrm{l}$ total volume with 1 cycle at $94^{\circ} \mathrm{C}$ for 1 min , followed by 35 cycles of denaturation for 30 s at $94^{\circ} \mathrm{C}$, annealing for 30 s at $54^{\circ} \mathrm{C}$, and extension for 50 s at $72^{\circ} \mathrm{C}$, with a final extension at $72^{\circ} \mathrm{C}$ for 10 min. Sequencing was performed using the ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit, V3.1 and analyzed on an ABI 3730 XL DNA analyzer (Applied Biosystems, CA, USA). The sequences obtained are available under GenBank accession numbers MK251475-MK251504. COI sequences of Amynthas hongyehensis Tsai \& Shen, 2010, Amynthas amis Shen, 2012 and Amynthas dinghuensis Shen \& Chih, 2016 were retrieved from GenBank. All analyses were done using A. corticis as outgroup. COI sequences were analyzed following Chang \& Chen (2005). Briefly, sequences were aligned using the default settings of ClustalX 2.0 (Larkin et al. 2007). Neigh-bor-joining analyses were conducted using Kimura's two-parameter model (Kimura 1980) in MEGA7 (Kumar et al. 2016) with 1000 bootstraps to evaluate the robustness of clades. All the vouchers and earthworm specimens are deposited at the Taiwan Endemic Species Research Institute (TESRI), Jiji, Nantou, Taiwan. Catalogue numbers are given in the species section, together with voucher numbers of barcoded specimens (Table 1). Note that each voucher number refers to one specimen only, whereas TESRI catalogue numbers may refer to more than one specimen.

Systematics

Family Megascolecidae

Amynthas luridus Shen \& Chang, sp. nov.

(Figure 1)
Holotype: Clitellate (mature) specimen (97 mm in total length, dissected), from roadside ditches in Ruiyen Creek Nature Reserve, Nantou County, $24^{\circ} 06^{\prime} 47.99^{\prime \prime} \mathrm{N}, 121^{\circ} 10^{\prime} 10.93^{\prime \prime} \mathrm{E}, 1526 \mathrm{~m}$ asl, 15 April 2009, H.-P. Chen (TESRI-O-H-54; RY021).

Paratype: 1 aclitellate, from roadside slopes in Ruiyen Creek Nature Reserve, Nantou County, $24^{\circ} 06^{\prime} 35.85^{\prime \prime} \mathrm{N}$, $121^{\circ} 11^{\prime} 20.19$ "E, 2198 m asl, 26 March 2009, T.-J. Lin \& D.-H. Chen (TESRI-O-P-48; RY020).

Other material. 1 clitellate (dissected) and 5 aclitellates (one dissected) from Mt. Beidongyen, Nantou County, 1800 m asl, 8 December 1999, C.-F. Tsai, S.-C. Tsai, P.-H. Ho \& H.-P. Shen (TESRI-O-1999-29-6); 1 aclitellate from Mt. Beidongyen, Nantou County, $24^{\circ} 04^{\prime} 59.05^{\prime \prime} \mathrm{N}, 121^{\circ} 08^{\prime} 12.18^{\prime \prime} \mathrm{E}, 1817 \mathrm{~m}$ asl, 19 August 2005, T.-L. Huang, I.-M. Hsiao \& H.-P. Shen (TESRI-O-2005-9-3); 1 clitellate (RY019, PCR failed) from roadside ditches in Ruiyen Creek Nature Reserve, Nantou County, $24^{\circ} 06^{\prime} 14.29^{\prime \prime} \mathrm{N}, 121^{\circ} 10^{\prime} 34.01^{\prime \prime} \mathrm{E}, 2195 \mathrm{~m}$ asl, 25 March 2009, T.-J. Lin \& D.-H. Chen (TESRI-O-2009-6-5); 1 clitellate (RY018) from ditches around forestry station in Ruiyen Creek Nature Reserve, Nantou County, $24^{\circ} 06^{\prime} 29.76^{\prime \prime} \mathrm{N}, 121^{\circ} 11^{\prime} 24.07^{\prime \prime} \mathrm{E}, 2308 \mathrm{~m}$ asl, 25 March 2009, M.-H. Shen (TESRI-O-2009-7).

Diagnosis. Length (clitellates) $83-107 \mathrm{~mm}$. Segments numbering 94-132. Setae 45-59 in VII, 49-65 in XX, $9-13$ between male pores. First dorsal pore in 12/13. Clitellum XIV-XVI. Spermathecal pores four pairs in 5/6-8/9, $0.28-0.32$ body circumference ventrally apart. Male pores $0.26-0.27$ body circumference ventrally apart in XVIII, each on a round porophore about 0.5 mm in diameter, with an anterior and/or a posterior genital papillae. Additional papillae often widely paired in postsetal XVII or occasionally paired in presetal XIX. Spermathecae four pairs in VIIX. Seminal vesicles vestigial, two pairs in XI and XII. Prostate glands lobed, paired in XVII-XIX. Prostatic ducts small, short, C-shaped in XVIII. Accessory glands sessile or stalked, corresponding to external genital papillae.

FIGURE 1. Amynthas luridus sp. nov. A. Ventral view of spermathecal pore region of Holotype (TESRI-O-H-54) (sp, spermathecal pore; gp, genital papilla). B. Ventral view of male pore region of holotype (mp , male porophore). C. Ventral view of male pore region of paratype. D. Dorsal view of right spermathecae of holotype (amp, ampulla; dv, diverticulum; ag, accessory gland). E. Dorsal view of right prostate gland of holotype (pd, prostatic duct). Scale bars $=1 \mathrm{~mm}$.

Description. External: Length (clitellates) 83-107 mm, weight 0.98-1.54 g in 95% ethanol. Segments numbering 94-132. Clitellum XIV-XVI, setae and dorsal pores absent, $2.83-4.22 \mathrm{~mm}$ in length and $3.47-4.38 \mathrm{~mm}$ in width. Prostomium epilobous. Three annuli (secondary segments) per segment in VI-XIII. Setal number 45-59 in VII, 49-65 in XX, and 9-13 between male pores in XVIII. First dorsal pore in 12/13. Spermathecal pores four pairs in intersegmental furrows of $5 / 6-8 / 9$, distance between paired pores $0.28-0.32$ body circumference ventrally apart, each pore small, often with a small papilla posteromedial and another anteromedial to each pore, papilla $0.25-0.3$ mm in diameter (Fig. 1A). No other genital papillae in the preclitellar region. Female pore single, mid-ventral in XIV. Male pores inconspicuous, paired in XVIII, 0.26-0.27 body circumference ventrally apart, each situated on a round porophore about 0.5 mm in diameter. Genital papillae anterior and/or posterior to male pores, paired, in
line with and smaller than male porophore. Additional papillae often widely paired in line with male porophore in postsetal XVII or occasionally paired in presetal XIX. For all 11 specimens examined, male pores with anterior and posterior papillae for two specimens and one of them (RY021) with an additional pair in postsetal XVII (Fig. 1B); male pores with anterior papillae for two specimens and one of them (RY020) with an additional pair in presetal XIX (Fig. 1C); male pores with posterior papillae for seven specimens and five of them with an additional pair in postsetal XVII. Each papilla round, with a slightly concave center, about 0.35 mm in diameter. Genital papillae absent in the mid-ventral region. Live worms white. Preserved specimens white and slightly darker on clitellum.

Internal: Septa 5/6-7/8 thick, 8/9/10 absent, 10/11 thick, 11/12-13/14 muscular. Nephridial tufts on anterior faces of $5 / 6 / 7$. Gizzard large, round in VIII-X. Intestine enlarged from XVI. Intestinal caeca paired in XXVII, simple, extending anteriorly to XXIV or XXIII. Esophageal hearts paired in XI-XIII. Spermathecae four pairs in VI-IX (Fig. 1D), ampulla elongated oval-shaped, surface wrinkled, $1.26-1.45 \mathrm{~mm}$ long and $0.6-0.84 \mathrm{~mm}$ wide, spermathecal duct stout, $0.3-0.6 \mathrm{~mm}$ in length. Diverticulum stalk slender, seminal chamber rudimentary or absent, not iridescent, $0.8-1.32 \mathrm{~mm}$ in total length. Accessory glands sessile or stalked, $0.3-0.5 \mathrm{~mm}$ in total length, each corresponding to external genital papilla. Holandric. Testes small, round, two pairs in ventrally joined sacs in X and XI. Seminal vesicles vestigial, two pairs in XI and XII, occupying less than half of the segmental compartment. Prostate glands paired in XVII-XIX (Fig. 1E), wrinkled and lobed. Prostatic ducts short, small, C-shaped in XVIII. Accessory glands round, sessile, about 0.3 mm in diameter, corresponding to external genital papillae.

DNA barcodes. GenBank accession numbers MK251504 (RY021, holotype), MK251503 (RY020, paratype) and MK251502 (RY018) (Table 1).

Etymology. The name luridus refers to the white, pale body color of this species.
Remarks. The postclitellar genital papilla arrangement of Amynthas luridus sp. nov. looks somewhat similar to that of A. aquilonius from central Taiwan, Amynthas hongyehensis Tsai \& Shen, 2010 and Amynthas amis Shen, 2012 from eastern Taiwan, and Amynthas dinghuensis Shen \& Chih, 2016 from southwestern Taiwan. A. aquilonius has postclitellar papillae widely paired in line with male porophore in presetal and postsetal XVII-XX (Tsai et al. 2001); A. hongyehensis has postclitellar papillae widely paired in line with male porophore in presetal XVIII-XX (Tsai et al. 2010; Shen 2012); A. amis occasionally has a papilla antero-medial to each male porophore (Shen 2012); A. dinghuensis has postclitellar papillae widely paired in line with male porophore in postsetal XVII and presetal XIX (Shen et al. 2016). These species are octothecal with four pairs of spermathecae in VI-IX (for an exception in A. hongyehensis see below). Their characters are compared in Table 2. All four species are morphologically distinguishable from A. luridus: A. aquilonius is much smaller, and has fewer segments, lower setal number, anteriorly placed first dorsal pore in 6/7, large seminal vesicles and large prostate glands (Tsai et al. 2001); A. hongyehensis is much larger, and has variable numbers of spermathecae from three pairs in VII-IX to four pairs in VI-IX with normal, iridescent diverticula, and large testes, large seminal vesicles and large prostate glands (Tsai et al. 2010; Shen 2012); A. amis has fewer setae, preclitellar genital papillae but no postclitellar papillae, spermathecae with normal, iridescent diverticula, and large testes, large seminal vesicles and large prostate glands (Shen 2012); A. dinghuensis is much smaller, and has fewer setae, spermathecae with normal, iridescent diverticula, and large testes, large seminal vesicles and large prostate glands (Shen et al. 2016). All these species are also genetically distinct (Fig. 2). Additionally, the GenBank accession number of the holotype of A. amis reported in Shen (2012) was erroneous and should be corrected to JX290409.

The genital papilla arrangement in the male pore region of A. luridus is also similar to that of Amynthas oyamai (Ohfuchi, 1937) from northern Japan, Amynthas morii (Kobayashi, 1938) from Korea, Amynthas dangi (Thai, 1984) from Vietnam, and Amynthas nametensis Hong et al., 2018 from Laos. A. oyamai has a papilla antero-medial to each male porophore (Ohfuchi 1937); A. morii has a papilla anterior to each male porophore (Kobayashi 1938b); A. dangi has papillae widely paired in line with male porophore in presetal XVIII-XIX and a papilla medial to each male pore (Thai 1984; Nguyen et al. 2016a); A. nametensis has papillae widely paired in line with male porophore in presetal XVIII-XIX (Hong et al. 2018). Like A. luridus, A. oyamai and A. morii are also octothecal and have small or little developed seminal vesicles and small, short prostatic duct (Ohfuchi 1937; Kobayashi 1938a, b). However, their characters of larger body size, lower setal numbers, absence of postclitellar genital papillae in XVII and XIX, and absent or poorly developed prostate glands are different from those of A. luridus (Table 2). As to A. dangi, its characters of large body size (length $>300 \mathrm{~mm}$), much higher setal numbers (59 setae in segment II and more than 100 setae per segment after segment VIII) and two pairs of spermathecal pores in 7/8/9 (Thai 1984; Nguyen et al. 2016a) clearly separate it from A. luridus. The body size and setal numbers of A. nametensis are close to those of

FIGURE 2. Neighbor-joining tree of Amynthas luridus and representatives of Amynthas aquilonius Tsai et al., 2001, Amynthas catenus Tsai et al., 2001, Amynthas proasacceus Tsai et al., 2001, Amynthas hohuanmontis Tsai et al., 2002, Amynthas tessellatus Shen et al., 2002, Amynthas fenestrus Shen et al., 2003, Amynthas tantulus Shen et al., 2003, Amynthas uvaglandularis Shen et al., 2003, Amynthas hongyehensis Tsai \& Shen, 2010, Amynthas amis Shen, 2012, and Amynthas dinghuensis Shen \& Chih, 2016 from Taiwan. The tree is based on COI gene and Kimura's two-parameter model, and rooted using Amynthas corticis. Specimens from this study and sequences retrieved from GenBank are shown by their voucher numbers and GenBank accession numbers, respectively. Type materials are indicated in parentheses. Numbers around nodes are bootstrap values above 50 .
TABLE 2. A comparison of characters among Amynthas luridus sp. nov., A. aquilonius Tsai et al., 2001, A. hongyehensis Tsai \& Shen, 2010, A. amis Shen, 2012, A. dinghuensis
Shen \& Chih, 2016, A. oyamai (Ohfuchi, 1937), and A. morii (Kobayashi, 1938).

TABLE 2. (Continued)

	Amynthas luridus sp. nov.	Amynthas aquilonius (Tsai et al. 2001)	Amynthas hongye- hensis (Tsai et al. 2010; Shen 2012)	Amynthas amis (Shen 2012)	Amynthas dinghuensis (Shen et al. 2016)	Amynthas oyamai (Ohfuchi 1937)	Amynthas morii (Kobayashi 1938b)
Spermathecae	VI-IX, diverticulum vestigial, not iridescent	VI-IX, diverticulum short, vestigial	VII-IX or VI-IX, diverticulum with normal, iridescent seminal chamber	VI-IX, diverticulum with normal, iridescent seminal chamber	VI-IX, diverticulum with normal, iridescent seminal chamber	VI-IX, small, diverticulum absent	VI-IX, small ampulla and long diverticulum
Testes	small	small	large	large	large	-	moderate in size
Seminal vesicles	vestigial	large	large	large	large	less developed	small
Prostate glands	XVII-XIX	large in XVI-XX	large in XVI-XX	XVI-XX	XVI-XX	absent or poorly developed	absent
Prostatic ducts	small, short, C-shaped in XVIII	large, C-shaped	long, U-shaped in XVII-XVIII	C-shaped in XVIII or U-shaped in	S-shaped in XVIII	short, C- or Sshaped in XVIII	small, short
Accessory glands	sessile or stalked	stalked	sessile	XVII-XVIII short-stalked in spermathecal region	stalked	-	large, stalked in spermathecal region

[^1]A. luridus, but A. nametensis is quadrithecal with two pairs of spermathecal pores in 7/8/9. Furthermore, A. nametensis has globular ampulla, diverticulum coiled into irregular ovate block, and prostate glands extending from XVII to XXIII with long, stout, coiled ducts (Hong et al. 2018), whereas A. luridus has elongated oval-shaped ampulla, diverticulum with a slender stalk and a seminal chamber rudimentary or absent, and prostate glands in XVII-XIX with short, small, C-shaped prostatic ducts.

FIGURE 3. Amynthas ruiyenensis sp. nov. Holotype (TESRI-O-H-55). A. Ventral view of spermathecal pore region (sp, spermathecal pore). B. Ventral view of male pore region (mp, male porophore; gp, genital papilla). C. Dorsal view of right spermathecae (amp, ampulla; dv, diverticulum). D. Dorsal view of left prostate gland (pd, prostatic duct; ag, accessory gland). Scale bars $=1 \mathrm{~mm}$.

Amynthas ruiyenensis Shen, sp. nov.

(Figure 3)

Holotype: Clitellate (mature) specimen (97 mm in total length, amputated, dissected), from roadside ditches in Ruiyen Creek Nature Reserve, Nantou County, $24^{\circ} 06^{\prime} 14.29^{\prime \prime} \mathrm{N}, 121^{\circ} 1^{\prime} 34.01^{\prime \prime} \mathrm{E}, 2195 \mathrm{~m}$ asl, 2 July 2009, T.-J. Lin \& J.-H. Wu (TESRI-O-H-55; RY023, PCR failed).

Diagnosis. Length 97 mm (holotype). Segments numbering 111. Setae 65 in VII, 59 in XX, and 10 between male pores. First dorsal pore in $12 / 13$. Clitellum XIV-XVI. Spermathecal pores four pairs in $5 / 6-8 / 9,0.24-0.25$ body circumference ventrally apart. Male pores 0.25 body circumference ventrally apart in XVIII, each on a round
porophore about 0.67 mm in diameter. Genital papillae large, one pair in presetal XIX. Spermathecae four pairs in VI-IX. Seminal vesicles small to large, two pairs in XI and XII. Prostate glands lobed, paired in XVII-XX. Prostatic ducts S-shaped in XVIII. Accessory glands large, sessile, paired in XIX, corresponding to external genital papillae.

Description. External: Length (clitellate) 97 mm , weight 0.52 g in 95% ethanol. Segments numbering 111. Clitellum XIV-XVI, setae and dorsal pores absent, 4.63 mm in length and 3.59 mm in width. Prostomium epilobous. Two annuli (secondary segments) per segment in VIII-IX and three annuli per segment in X-XIII. Setae minute, vague, number 65 in VII, 59 in XX and 10 between male pores in XVIII. First dorsal pore in 12/13. Spermathecal pores four pairs in intersegmental furrows of $5 / 6-8 / 9$, distance between paired pores $0.24-0.25$ body circumference ventrally apart, (Fig. 3A). Genital papillae absent in the preclitellar region. Female pore single, mid-ventral in XIV. Male pores inconspicuous, paired in XVIII, 0.25 body circumference ventrally apart, each situated on a round porophore about 0.67 mm in diameter, surrounded by a circular skin fold (Fig. 3B). One pair of large genital papillae in presetal XIX (Fig. 3B), separated by 9 setae, each papilla about 1.06 mm in diameter. Live worms white. Preserved specimens white and pale brown on clitellum.

Internal: Septa $5 / 6-7 / 8$ thick, 8/9/10 absent, 10/11-13/14 thick. Nephridial tufts dense, bush-like mass on anterior faces of 5/6/7. Gizzard large, round in VIII-X. Intestine enlarged from XVI. Intestinal caeca paired in XXVII, simple, extending anteriorly to XXV or XXIII. Esophageal hearts paired in XI-XIII. Spermathecae four pairs in VI-IX (Fig. 3C), ampulla elongated oval-shaped, $1.04-1.33 \mathrm{~mm}$ long and $0.7-0.86 \mathrm{~mm}$ wide, spermathecal duct stout, $0.44-0.56 \mathrm{~mm}$ in length. Diverticulum vestigial or long, tubular, $0.6-1.79 \mathrm{~mm}$ in total length, stalk slender, seminal chamber normal, iridescent to absent. Holandric. Testes large, oval, two pairs in ventrally joined sacs in X and XI. Seminal vesicles follicular, cotton-like, two pairs in XI and XII, variable in size: large one occupying an entire segmental compartment and small one about half of the segmental compartment. Prostate glands paired in XVII-XX (Fig. 3D), wrinkled and lobed. Prostatic ducts enlarged in the middle, S-shaped in XVIII. Accessory glands large, sessile, paired in XIX, 0.65 mm in width and 0.86 mm in length, corresponding to external genital papillae (Fig. 3D).

Etymology. The name ruiyenensis is given to this species with reference to its type locality in Ruiyen Creek Nature Reserve, Nantou, central Taiwan.

Remarks. Amynthas ruiyenensis sp. nov. is akin to A. dinghuensis from southwestern Taiwan in having four pairs of spermathecae in VI-IX and a pair of genital papillae in presetal XIX. However, the much smaller body size and genital papillae, lower segment and setal numbers, and stalked accessory glands of A. dinghuensis distinguish it from A. ruiyenensis. Amynthas longicauliculatus (Gates, 1931) from Burma, Amynthas murayamai (Kobayashi, 1938) from Korea and Amynthas shimaensis (Goto \& Hatai, 1899) from Japan are also octothecal and have large, paired postclitellar genital markings. Compared with A. ruiyenensis, A. longicauliculatus is apparently much larger with body length of $140-244 \mathrm{~mm}$ and width of $7-10 \mathrm{~mm}$, and has higher segment number (137-140) and three pairs of genital markings on 18/19, 19/20 and 20/21 (Gates 1931). The position and size of genital papillae of A. ruiyenensis appear like those of A. murayamai, but the latter has higher segment number (137-139), lower setal numbers (42 in IX and 52 in XX) and wider spacing between paired spermathecal pores and male pores with about 0.45 and 0.3 ventral circumference, respectively (Kobayashi 1938b). In addition, the reproductive organs of A. ruiyenensis and A. murayamai vary greatly: A. murayamai has small, equal-sized seminal vesicles, relatively large pseudovesicles in XIII, small prostate glands consisting of two main lobes in XVII-XVIII, thin prostatic ducts looped in a C - or L-shape, no accessory glands corresponding to external genital markings, and spermathecae with large diverticula (Kobayashi 1938b). As to A. shimaensis, it is a large earthworm with a body length of 205 mm , a width of 7 mm , and 163 segments (Goto \& Hatai 1899). Its genital papillae are also larger with a diameter of about 2.5 mm and located in postsetal XIX rather than presetal XIX (Goto \& Hatai 1899).

Apart from all the aforementioned species, Amynthas omodeoi Zhao \& Qiu, 2009 and Amynthas edwardsi Zhao \& Qiu, 2009 from Hainan Island, China also have large, paired postclitellar genital papillae (Zhao et al. 2009). However, both species are sexthecal with three pairs of spermathecae in VI-VIII and have coiled diverticula. A. omodeoi has much lower setal numbers with 26-27 in V and 30-36 in XX, papillae paired in 18/19, large prostate glands in XVII-XXIII, U-shaped prostatic ducts, and long stalked accessory glands (Zhao et al. 2009). Like A. ruiyenensis, A. edwardsi also has paired papillae in presetal XIX, but it is also similar to A. omodeoi regarding the much lower setal numbers with $32-34$ in V and $32-33$ in XX, large prostate glands in 1/2XVI-XXIV and U-shaped prostatic ducts. A. ruiyenensis can be easily distinguished from A. omodeoi and A. edwardsi by these disparate features.

On some recent assignments of species to Amynthas and Metaphire

According to Sims and Easton (1972, p. 200), the only character that distinguishes Amynthas from Metaphire is the absence of copulatory pouches in the former and presence of copulatory pouches in the latter. Even though this distinction was based on phenetics and both genera are now believed to be polyphyletic, maintaining the two genera is a convenient practicality as it helps to provide an overview over a vast number of species in this group of pheretimoids.

However, Hong et al. (2018), in their most recent descriptions of nine new Amynthas species from Laos, described "copulatory pouches" for the following species: Amynthas hoauykanangensis, Amynthas fleischmani, Amynthas antethecus and Amynthas elenabondae. Also, the term "secondary male pores" was mentioned for A. fleischmani, A. antethecus and A. elenabondae in the text, and the "transverse sphincter-like slit" of A. fleischmani, "opening surrounded by tubercular wrinkled epidermal ring" of A. antethecus and "crescent openings" of A. elenabondae described by the authors actually are openings of copulatory pouches (= secondary male pores). The reason for placing these species in Amynthas as stated by Hong et al. (2018, p. 247) is as follows: "It is simply because all other characters agree closely with other species unequivocally assignable to Amynthas, and to the aeruginosus group within that genus". However, there is no further explanation regarding what all the other characters are and how closely these characters agree with the other 68 species and subspecies of the aeruginosus-group listed in Sims and Easton (1972). The generic assignments are arbitrary, as they do not respect the criteria that hitherto all authors (Hong and co-authors included) have adhered to, and a phylogenetic framework of the pheretimoid group, which might justify such a decision, is lacking.

James et al. (2005, p. 1013) cite Gates (1975, p. 7) and state that they support following the suggestion of Gates (1975) and support restricting Metaphire to species with well-developed copulatory pouches protruding into the coelom. By this criterion, many of the species listed under Metaphire in Sims and Easton (1972) would have to be transferred to Amynthas, such as the two peregrine species, Metaphire californica (Kinberg, 1867) and Metaphire houlleti (Perrier, 1872), Metaphire bianensis bianensis (Stephenson, 1931) from Vietnam, Metaphire fordi (Michaelsen, 1934) from Sarawak, Malaysia, Metaphire flavarundoida (Chen, 1935) from Hong Kong, Metaphire ignobilis (Gates, 1935) from Sichuan, central China, and Metaphire riukiuensis (Ohfuchi, 1957) from the southern part of the Ryukyu Archipelago, Japan. Yet Gates' (1975, p. 7) statement only shows his concern about the oversimplified classification by Sims and Easton (1972) without better defining the various status of male pores. Gates uses the genus Pheretima for all the pheretimoid earthworms in all his publications and has never accepted the revision by Sims and Easton (1972). How come Gates' (1975, p. 7) statement become the suggestion of restricting Metaphire to species with well-developed copulatory pouches protruding into the coelom? This restricted understanding of copulatory pouches has become a source of taxonomic confusion and even errors. For instance, in James et al. (2005), Amynthas huangi was compared with Amynthas taipeiensis (Tsai, 1964), while it should have been compared with M. houlleti listed in the houlleti-group of the genus Metaphire in Sims and Easton (1972) (see Table 3). The male pores of A. huangi were described as on small knobs visible under hoods covering male pore openings (James et al. 2005, p. 1014). The so-called "small knobs" and "male pore openings" should be penes and secondary male pores (= openings of copulatory pouches), respectively. In fact, A. huangi is indeed a junior synonym of M. houlleti as pointed out by Tsai et al. (2009). Other synonyms as indicated in Tsai et al. (2009) are as follows: Amynthas chaishanensis James et al., 2005 synonymous with Metaphire formosae (Michaelsen, 1922), Amynthas kaopingensis synonymous with Metaphire paiwanna Tsai et al., 2000, Amynthas ailiaoensis synonymous with Metaphire feijani Chang and Chen, 2004. Likewise, Hong and James (2013) compared Amynthas chiakensis with species of the tokioensis-group of the genus Amynthas, while it should have been compared with Metaphire soulensis (Kobayashi, 1938) listed in the glandularis-group of the genus Metaphire in Sims and Easton (1972) as shown by Blakemore et al. (2015) (see also Table 4). However, the higher setal numbers and presence of hearts in segment X in A. chiakensis maintain both species as separate species (Table 4).

As stated in Sims and Easton (1972, p. 211), in comparison with species of allied genera, the members of the genus Amynthas can be readily recognized by the absence of copulatory pouches. Consequently, when the term "copulatory pouch" is used, species possessing this structure should not be placed under Amynthas no matter it is intramural copulatory pouch, intracoelomic copulatory pouch or well-characterized copulatory pouch. Nevertheless, what mentioned in the last part of the discussion section in James et al. (2005), "Two newly discovered Amynthas from the Philippines...have a different and unique structure of the prostatic duct, which is modified to form a sheath over a
small penis visible through the outer secondary male pores", is obviously in contradiction to Sims and Easton (1972) since secondary male pore is the opening of copulatory pouch, not to mention penis!

Although James et al. (2005), Hong and James $(2009,2013)$ and Hong et al. (2018) cited Sims and Easton (1972) in their papers and compared their species with species listed in certain species groups classified by Sims and Easton (1972), they actually followed James et al.'s (2005) concept, which is more restricted than the one in Sims and Easton (1972). This is corroborated by the fact that among all the new earthworm species published by these authors from Korea to Laos during 2001-2018, no Metaphire species was reported. Since these authors considered their new species to belong to Amynthas, no comparison with other Metaphire species listed in Sims and Easton (1972) was made. Therefore, readers as well as the original authors need to be aware that species regarded as Amynthas based on James et al.'s (2005) definition might resemble species assigned to Metaphire in Sims and Easton (1972). To conclude, no matter how a copulatory pouch is defined, and no matter to which of the two genera a new species is assigned, species comparisons should always be made with the most similar species in both Amynthas and Metaphire to avoid possible synonyms.

TABLE 3. Evidence that Amynthas huangi James et al., 2005 is a junior synonym of Metaphire houlleti (Perrier, 1872), based on specimens of the latter species from the same region (Shen et al. 2005).

	M. houlleti (Perrier, 1872)	A. huangi James et al., 2005
Locality	Pingtung, southern Taiwan	Pingtung, southern Taiwan
Elevation (m asl)	$200-300$	391
Number of specimens	6	1
Body length (mm)	$107-118$	70
Segment number	$86-102$	101
Clitellum width (mm)	$2.39-3.6$	3.2
First dorsal pore	$9 / 10$	$12 / 13$
Setal number		
VII	$30-36$	38
XIV (clitellum)	about 40 setal pits	absent in text, present in Fig. 2E
XV (clitellum)	about 41 setal pits	absent in text, present in Fig. 2E
XVI (clitellum)	about 42 setal pits	absent in text, present in Fig. 2E
XX	$50-52$	-
XXV	-	48
between male pores	$9-10$	10
Copulatory pouch	C-shaped opening in the inner side	C-shaped opening in the inner side, cov-
		ered with hood
Spermathecal pores	3 pairs (6/7-8/9), deep slits	3 pairs (6/7-8/9), deep slits
Spermathecae	ampulla oval, large; diverticulum with a slen-	ampulla ovoid, large; diverticulum with a
	der stalk and an enlarged, greatly coiled end	slender stalk and an ovate mass of tightly
		folded tubular chamber
Genital papillae		
preclitellar	absent	absent
postclitellar	absent	absent
Preclitellar accessory glands	stalked, connecting to spermathecal ducts	stalked, next to spermathecal ducts
Hearts	4 pairs in X-XIII	4 pairs in X-XIII
Intestine enlarged from	XV	XV
Intestinal caeca	XXVII-XXIV	XXVII-XXIV
Testes	Small, XI, XII	Small, XI, XII
Seminal vesicles	large, XVI-XXII or XVI-XXIII	large in XVIII
Prostate glands	white patch, sessile	
Accessory glands in XVIII		
Darge, sessile mass		

${ }^{1}$ Data from Shen et al. (2005).

TABLE 4. A comparison of characters between Metaphire soulensis and Amynthas chiakensis. Data from the original descriptions.

	M. soulensis (Kobayashi, 1938)	A. chiakensis Hong \& James, 2013
Locality	Korea	Korea
Number of specimens	13	7
Body length (mm)	51-86	70-82
Segment number	83-95	93-94
Greatest diameter (mm)	5	5.5
First dorsal pore	12/13	12/13 or 11/12
Prostomium	epilobous	epilobous
Setal number		
VII	41-47	54-63
XX	44-45	59-71
XXX	46-53	-
between male pores	15-16	18-22
Genital papillae		
preclitellar	absent	absent
postclitellar	absent	absent
Male pores	each surrounded by 3-6 small papillae on top of a protruded disc which can be wholly everted or withdrawn into the body cavity	each surrounded by small circular papillae arranged in C-shaped array
Spermathecal pores	6/7/8, about 4/11 (=0.36) body circumference ventrally apart	6/7/8, 0.25-0.34 ventral circumference apart
Spermathecae	vestigial without diverticulum	ampulla ovate with a long diverticulum
Hearts	3 pairs in XI-XIII	4 pairs in X-XIII
Intestine enlarged from	XV	XV
Intestinal caeca	XXVII-XXIII, complicated with 5 or 6 fingershaped secondary caeca with the dorsalmost longest and gradually shorter for more ventral ones	XXVII-XXIV, manicate with 4-5 small finger-shaped lobes decreasing in size ventrally
Testes	small in X and XI	X, XI
Seminal vesicles	each moderate in size with a large dorsal lobe in XI and XII	small with dorsal lobes in XI and XII
Prostate glands	absent	XVI-XXII
Accessory gland	3-6 large, whitish	small, stalked

On a hitherto undetected species group in Amynthas

One of the species mentioned above, A. chiakensis Hong \& James, 2013, was compared with Amynthas sonjaesiki Hong \& James, 2009 and also with Amynthas sanchongensis Hong \& James, 2001 in the primary literature (Hong \& James 2013). However, comparisons between the latter two species, A. sonjaesiki and A. sanchongensis, have never been made. Actually, the two species are fairly similar to each other (see comparisons in Table 5). It seems that the only difference is the higher number of genital papillae in A. sonjaesiki.

Meanwhile, A. sanchongensis was suggested as a junior synonym of A. tappensis (Ohfuchi, 1935) (Blakemore 2012; Blakemore et al. 2015). Three further species, described by Hong and James (2001), had also been synonymized with A. tappensis, namely Amynthas odaesanensis, Amynthas righii, and Amynthas fasciiformis (Blakemore 2003, 2012). Together with Amynthas gucheonensis (Song \& Paik, 1970) and Amynthas bangtaesan and Amynthas seoraksan described by Blakemore et al. (2015), these species share the following characters: (1) two pairs of spermathecal pores in intersegmental furrows of $6 / 7 / 8$, (2) numerous genital papillae around each spermathecal pore and male porophore, (3) large ampullae, (4) long diverticula, (5) large prostate glands, and (6) manicate intestinal caeca (Table 5). The synonymies of these species proposed by Blakemore $(2003,2012)$ and Blakemore et al. (2015) are rejected here (see also Table 5). In spite of the morphological similarities, comparisons among these new spe-
TABLE 5. A comparison of characters among Amynthas sanchongensis, Amynthas sonjaesiki, Amynthas tappensis, Amynthas gucheonensis, Amynthas odaesanensis, Amynthas righii, Amynthas fasciiformis, Amynthas bangtaesan bangtaesan, Amynthas bangtaesan confinius, Amynthas seoraksan seoraksan, and Amynthas seoraksan iti. Data from the original descriptions.

	A. sanchongensis Hong \& James, 2001	A. sonjaesiki Hong \& James, 2009	A. tappensis (Ohfuchi, 1935)
Locality	Korea	Korea	northern Japan
Number of specimens	32	6	32
Body length (mm)	88-121	92-118	131-208
Segment number	78-95	71-97	84-115
Diameter (mm)	5.2-7.1	5.3-7.0	5-8
First dorsal pore	12/13	12/13	12/13
Prostomium	epilobous	epilobous	-
Setal number			
VII	53	51	39-40
XX	48	49	55-64
between male pores	14-18	14-20	16-25
Male pores	each on a large, conical, protuberant porophore with 4-5 small, presetal papillae medial to it	each on a large, oval, protuberant porophore with 14-28 small, presetal papillae medial to it	each deeply caved on a round porophore ringed with papillae together with an oblong-shaped patch containing 7-10 small, presetal papillae medial to it
Spermathecal pores	6/7/8, flanked anteriorly and posteriorly by tumid	6/7/8, surrounded by thickened lips; 8-16	6/7/8, 4-11 small papillae posteromedial to each pore
Spermathecae	lips; each lip bearing 0-6 small papillae ampulla large, diverticulum slender, cayenne pepper-shaped	small papillae posteromedial to each pore ampulla large, diverticulum with a long, cayenne pepper-shaped seminal chamber	ampulla large, ovoid or sac-like, diverticulum long, coiled
Hearts	4 pairs in X-XIII	4 pairs in X-XIII	last in XIII
Intestine enlarged from	XV	XV	XV
Intestinal caeca	XXVII-XXIII, manicate with 5 or 6 fingershaped lobes	XXVII-XXIII, manicate with 7 or 8 fingershaped lobes	XXVII-XXIII, manicate with 5 finger-shaped lobes
Testes	X, XI	X, XI	-
Seminal vesicles	middle size, well-developed in XI and XII	large in XI and XII	well-developed in XI and XII
Prostate glands	large in XVI-XXI	large in XVI-XX	large in XVI-XX
Prostatic ducts	long, looped	long, thick	looped, strongly developed
Accessory gland	small, stalked	stalked	short-stalked

TABLE 5. (Continued)

	A. gucheonensis (Song \& Paik, 1970)	A. odaesanensis Hong \& James, 2001	A. righii Hong \& James, 2001
Locality	Korea	Korea	Korea
Number of specimens	55	4	65
Body length (mm)	103-147	73-77	49-95
Segment number	83-119	81-84	57-96
Diameter (mm)	5.5-8	2.9-3.4	4.5-4.7
First dorsal pore	12/13	12/13	12/13
Prostomium	epilobous	epilobous	epilobous
Setal number			
VII	59-79	60	49
XX	65-82	64	48
between male pores	16-28	13-15	16
Male pores	each on a circular-shaped disc with an oblong-shaped patch containing 11-19 small, presetal papillae medial to it	each on an ovate to circular pad with 11-15 small, presetal papillae and about 6 postsetal papillae medial to it	each on an oval pad with 1-33 small, presetal and postsetal papillae medial to it
Spermathecal pores	6/7/8, 3-10 small papillae posteromedial to each pore	6/7/8, 5-8 small papillae posteromedial to each pore	6/7/8, 9-15 small papillae posteromedial to each pore
Spermathecae	ampulla large, diverticulum slender with a rather long, sausage-shaped seminal chamber	ampulla large, diverticulum slender, cayenne pep-per-shaped	ampulla large, diverticulum slender with a long, sausage-shaped seminal chamber
Hearts	3 pairs in XI-XIII	3 pairs in XI-XIII	3 pairs in XI-XIII
Intestine enlarged from	XV	XV	XV
Intestinal caeca	XXVII-XXIII, manicate with 5-7 finger-shaped lobes	XXVII-XXIV, manicate with 5 finger-shaped lobes	XXVII-XXV, manicate with 5 or 6 fingershaped lobes
Testes	X, XI	X, XI	X, XI
Seminal vesicles	well-developed in XI and XII	XI, XII	well-developed in XI and XII
Prostate glands	well-developed in XVI-XX, XXI	large in XVII-XX	large in XVII-XX
Prostatic ducts	U-shaped loop	short, thick	short, thick
Accessory gland	short-stalked	small, stalked	small, stalked

TABLE 5. (Continued)

	A. fasciiformis Hong \& James, 2001	A. bangtaesan bangtaesan Blakemore, 2015	A. bangtaesan confinius Blakemore, 2015
Locality	Korea	Korea	Korea
Number of specimens	25	1	2
Body length (mm)	62-87	63	62-80
Segment number	68-92	83	89
Diameter (mm)	4.3-4.5	-	-
First dorsal pore	12/13	13/14	12/13
Prostomium	epilobous	epilobous	epilobous
Setal number			
VII	47	50-60	50-60
XX	48	50-60	50-60
between male pores	16-17	16	12
Male pores	each on a small, round porophore with a small, postsetal papilla and 16-25 very small, presetal papillae medial to it	each on a small, round porophore with 6 or 7 small, presetal papillae and 8-10 small, postsetal papillae medial to it	each on a round porophore ringed with papillae together with an oblong-shaped patch containing about a dozen small, presetal papillae medial to it
Spermathecal pores	6/7/8, 9-13 small papillae posteromedial to each pore	6/7/8, 6 or 7 small papillae posteromedial to each pore	6/7/8, 6 or 7 small papillae posteromedial to each pore
Spermathecae	ampulla large, diverticulum with a long, cayenne pepper-shaped seminal chamber	ampulla saccular with clavate diverticulum	ampulla deflated with clavate diverticulum
Hearts	4 pairs in X-XIII	-	-
Intestine enlarged from	XV	-	-
Intestinal caeca	XXVII-XXIII, manicate with 5 fingershaped lobes	manicate in XXVII	manicate in XXVII
Testes	X, XI	-	-
Seminal vesicles	small in XI and XII	large in XI and XII	large in XI and XII
Prostate glands	large in XVI-XX	racemose	racemose
Prostatic ducts	thick	straight, muscular	U-shaped, muscular
Accessory gland	stalked or sessile	stalked	stalked

TABLE 5. (Continued)

	A. seoraksan seoraksan Blakemore, 2015	A. seoraksan iti Blakemore, 2015
Locality	Korea	Korea
Number of specimens	1	6
Body length (mm)	80	$111-120$
Segment number	86	-
Diameter (mm)	-	-
First dorsal pore	$12 / 13$	$12 / 13$
Prostomium	epilobous	epilobous
Setal number		
VII	$40-50$	$50-60$
XX	$40-50$	$50-60$
between male pores	21	-
Male pores	each on a round porophore with 6 or 7 small, presetal papillae medial to it	each on a round porophore with about a dozen small, presetal papillae medial to it
Spermathecal pores	$6 / 7 / 8,1$ or 2 small papillae posteromedial to each pore	$6 / 7 / 8,2-6$ small papillae posteromedial to each pore
Spermathecae	ampulla saccular with clavate diverticulum	ampulla deflated with clavate diverticulum
Hearts	-	-
Intestine enlarged from	-	-
Intestinal caeca	manicate in XXVII	manicate in XXVII
Testes	-	-
Seminal vesicles	large in XI and XII	large in XI and XII
Prostate glands	racemose	racemose
Prostatic ducts	bent, muscular	muscular
Accessory gland	stalked	stalked

cies have been lacking since their publication. This is resulted majorly from inadequate literature review. The brief and oversimplified original descriptions of A. bangtaesan and A. seoraksan together with their subspecies rendered detailed comparisons with the above-mentioned species difficult, since these species were subtly differentiated. Blakemore et al. (2015) compared A. bangtaesan and A. seoraksan morphologically with A. gucheonensis only. However, A. bangtaesan should have been compared with A. odaesanensis and A. righii, since all three species are much closer in body size and setal numbers, and in having small, postsetal papillae medial to each male porophore and prostatic ducts which are not looped (Table 5). As to A. seoraksan, it has a higher morphological affinity with A. sanchongensis than with A. gucheonensis with regard to body size, setal numbers, and numbers of papillae medial to each spermathecal pore and each male porophore (Table 5). Again, it should be emphasized that species comparisons should always be made with the most similar species to avoid possible synonyms. All the taxa listed in Table 5 are considered to be valid here. Comparisons with new species similar to this group and published hereafter can follow Table 5. Among this group of earthworms, A. tappensis is from Japan and it deviates from all the other taxa from Korea in terms of larger body size and long, coiled diverticula. Perhaps the Korean earthworms in this group speciated from the territory of Korea and are monophyletic just like the Metaphire formosae species-group from Taiwan (Chang et al. 2008, 2014). It would be interesting to resolve the phylogenetic relationships among these earthworms.

Three Japanese species, Amynthas bimaculata (Ishizuka, 1999), Amynthas silvatica (Ishizuka, 1999) and Amynthas surcata (Ishizuka, 1999), were also synonymized with A. tappensis by Blakemore $(2003,2012)$. Like A. tappensis, the former two species have long and coiled diverticula, whereas each diverticulum of A. surcata is with a slender stalk and a long, sausage-shaped seminal chamber (Table 6). In further comparisons with A. tappensis, both A. bimaculata and A. silvatica are much smaller, have higher setal number in VII and lower setal number in XX (Table 6). Moreover, A. bimaculata has paired patches of papillae in presetal XIX, while A. silvatica has papillae drastically reduced in numbers and distributed in presetal XVII and XIX (Table 6). The synonymies of these species are also rejected. A. bimaculata and A. silvatica are excluded from the aforementioned group of Korea species on account of their long and coiled diverticula. A. surcata is also ruled out since it has very low numbers of genital papillae in the spermathecal and the male pore regions and large, long-stalked accessory glands (Table 6).

TABLE 6. A comparison of characters among Amynthas tappensis, Amynthas bimaculata, Amynthas silvatica, and Amynthas surcata.

	A. tappensis (Ohfuchi, 1935)	A. bimaculata (Ishizuka, 1999)	A. silvatica (Ishizuka, 1999)	A. surcata (Ishizuka, 1999)
Locality	northen Japan	Tokyo, Japan	Tokyo, Japan	Tokyo, Japan
Number of specimens	32	12	9	40
Body length (mm)	131-208	40-70	60-80	60-125
Segment number	84-115	80-90	69-93	54-99
Diameter (mm)	5-8	3-4.5	4-5.8	4-5
First dorsal pore	12/13	12/13	11/12	12/13
Setal number				
VII	39-40	44-48	50-54	47-48
XX	55-64	44-50	50-58	51-56
between male pores	16-25	about 12	about 18	about 15
Male pores	each deeply caved on a round porophore ringed with papillae together with an oblong-shaped patch containing 7-10 small, presetal papillae medial to it	each simple on a round porophore with an oblongshaped patch containing about 12 small, presetal papillae medial to it	each simple on a round porophore with 4 presetal papillae medial to it	each simple on a round porophore with 2 presetal papillae medial to it
Spermathecal pores	6/7/8, 4-11 small papillae posteromedial to each pore	6/7/8, 2 papillae posteromedial to each pore	6/7/8, 1 papilla posteromedial to each pore on $7 / 8$	6/7/8, 1 papilla posteromedial to each pore on $7 / 8$

TABLE 6. (Continued)

	A. tappensis (Ohfuchi, 1935)	A. bimaculata (Ishizuka, 1999)	A. silvatica (Ishizuka, 1999)	A. surcata (Ishizuka, 1999)
Genital papillae				
XVII	absent	absent	2 presetal papillae on each side, in line with male pore papillae	absent
XIX	absent	an oblong-shaped patch containing about 6 small, presetal papillae on each side, in line with male pore papillae	2 presetal papillae on each side, in line with male pore papillae	absent
Spermathecae	ampulla large, ovoid or sac-like, diverticulum long, coiled	ampulla large, shovel-shaped, diverticulum long, coiled	ampulla large, shovel-shaped, diverticulum long, coiled	ampulla large, shovel-shaped, diverticulum slender with a long, sausageshaped seminal chamber
Intestine enlarged from	XV	XV	XV	XV
Intestinal caeca	XXVII-XXIII, manicate with 5 finger-shaped	XXVII-XXIII, manicate with 5-7	XXVII-XXIV, manicate with 4-6	XXVII-XXIII, manicate with 4-6
Seminal vesicles	lobes well-developed in XI and XII	finger-shaped lobes large in XI and XII	finger-shaped lobes large in XI and XII	finger-shaped lobes large in XI and XII
Prostate glands	large in XVI-XX	large in XVI-XXII	large in XVII-XXII	large in XVI-XX
Prostatic ducts	looped, strongly developed	looped, stout	-	C-shaped
Accessory gland		stalked	stalked	large, long-stalked

Acknowledgments

We are grateful to H.-P. Chen, T.-J. Lin, D.-H. Chen, C.-F. Tsai, S.-C. Tsai, P.-H. Ho, J.-H. Wu, T.-L. Huang, I.-M. Hsiao and M.-H. Shen for their assistance in field collections and specimen preparation, and to J.-H. Chen of the National Taiwan University for access to laboratory facilities. We thank the editor Rüdiger M. Schmelz for his helpful comments on an earlier version of this manuscript. C.-H. Chang received funding from the Ministry of Education (Yushan Young Scholar Award). This study was supported financially by the Taiwan Endemic Species Research Institute.

References

Beddard, F.E. (1895) Preliminary account of new species of earthworms belonging to the Hamburg Museum. Proceedings of the Zoological Society of London, 1895, 210-239. https://doi.org/10.1111/j.1469-7998.1895.tb00005.x
Blakemore, R.J. (2003) Japanese earthworms (Annelida: Oligochaeta): a review and checklist of species. Organisms, Diversity \& Evolution, 3 (Electronic Supplement 11), 1-43. https://doi.org/10.1078/1439-6092-00082
Blakemore, R.J. (2012) Japanese earthworms revisited a decade on (Oligochaeta: Megadrilacea). Zoology in the Middle East, 58 (Supplementum 4), 15-22. https://doi.org/10.1080/09397140.2012.10648981
Blakemore, R.J., Lee, S. \& Seo, H.-Y. (2015) Account of montane and insular speciation in some Korean megadriles (Annelida:

Oligochaeta). Journal of Species Research, 4 (1), 1-22.
https://doi.org/10.12651/JSR.2015.4.1.001
Chang, C.-H. \& Chen, J.-H. (2004) A new species of earthworm belonging to the genus Metaphire Sims and Easton 1972 (Oligochaeta: Megascolecidae) from southern Taiwan. Taiwania, 49 (4), 219-224.
Chang, C.-H. \& Chen, J.-H. (2005) Taxonomic status and intraspecific phylogeography of two sibling species of Metaphire (Oligochaeta: Megascolecidae) in Taiwan. Pedobiologia, 49, 591-600.
https://doi.org/10.1016/j.pedobi.2005.07.002
Chang, C.-H., Lin, S.-M. \& Chen, J.-H. (2008) Molecular systematics and phylogeography of the gigantic earthworms of the Metaphire formosae species group (Clitellata: Megascolecidae). Molecular Phylogenetics and Evolution, 49 (3), 958968.
https://doi.org/10.1016/j.ympev.2008.08.025
Chang, C.-H., Chuang, S.-C., Wu, J.-H. \& Chen, J.-H. (2014) New species of earthworms belonging to the Metaphire formosae species group (Clitellata: Megascolecidae) in Taiwan. Zootaxa, 3774 (4), 324-332. https://doi.org/10.11646/zootaxa.3774.4.2
Chang, C.-H., Lin, Y.-H., Chen, I.-H., Chuang, S.-C. \& Chen, J.-H. (2007) Taxonomic re-evaluation of the Taiwanese montane earthworm Amynthas wulinensis Tsai, Shen \& Tsai, 2001 (Oligochaeta: Megascolecidae): Polytypic species or species complex? Organisms, Diversity \& Evolution, 7 (3), 231-240. https://doi.org/10.1016/j.ode.2006.06.001
Chen, Y. (1935) On a small collection of earthworms from Hongkong with descriptions of some new species. Bulletin of the Fan Memorial Institute of Biology, 6, 33-59.
Folmer, O., Black, M., Hoeh, W., Lutz, R. \& Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
Gates, G.E. (1930) The earthworms of Burma. I. Records of the Indian Museum, 32, 257-356.
Gates, G.E. (1931) The earthworms of Burma. II. Records of the Indian Museum, 33, 327-442.
Gates, G.E. (1932) The earthworms of Burma. III. The Megascolecinae. Records of the Indian Museum, 34, 357-549.
Gates, G.E. (1935) New earthworms from China, with notes on the synonymy of some Chinese species of Drawida and Pheretima. Smithsonian Miscellaneous Collections, 93 (3), 1-19.
Gates, G.E. (1972) Burmese earthworms: an introduction to the systematics and biology of megadrile oligochaetes with special reference to Southeast Asia. Transactions of the American Philosophical Society, 62 (7), 1-326. https://doi.org/10.2307/1006214
Gates, G.E. (1975) On a few earthworms from new Guinea (Oligochaeta). Megadrilogica, 2 (1), 6-8.
Goto, S. \& Hatai, S. (1899) New or imperfectly known species of earthworms. No. 2. Annotationes Zoologicae Japonenses, 3, 13-24.
Hong, Y. \& James, S.W. (2001) New species of Korean Amynthas Kinberg, 1867 (Oligochaeta, Megascolecidae) with two pairs of spermathecae. Revue suisse de Zoologie, 108 (1), 65-93. https://doi.org/10.5962/bhl.part. 79621
Hong, Y. \& James, S.W. (2009) Some new Korean Megascolecoid earthworms (Oligochaeta). Journal of Natural History, 43 (21-22), 1229-1256. https://doi.org/10.1080/00222930902894096
Hong, Y. \& James, S.W. (2013) Three new earthworm species of the genus Amynthas (Clitellata: Megascolecidae) from Mt. Chiak National Park, Korea. Zootaxa, 3646 (1), 75-81.
https://doi.org/10.11646/zootaxa.3646.1.6
Hong, Y., Inkhavilay, K. \& James, S.W. (2018) Nine new species of the "aeruginosus"-group in Amynthas (Clitellata: Megascolecidae) from Nam Et-Phouley National Protected Area, Laos. Zootaxa, 4496 (1), 238-250. https://doi.org/10.11646/zootaxa.4496.1.19
Ishizuka, K. (1999) New species of the genus Pheretima s. lat. (Annelida, Oligochaeta, Megascolecidae) from Tokyo, Japanspecies with manicate intestinal caeca. Bulletin of the National Science Museum, Tokyo, Series A, 25 (1), 33-57.
James, S.W., Shih, H.-T. \& Chang, H.-W. (2005) Seven new species of Amynthas (Clitellata: Megascolecidae) and new earthworm records from Taiwan. Journal of Natural History, 39 (14), 1007-1028. https://doi.org/10.1080/00222930400001434
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120. https://doi.org/10.1007/BF01731581
Kinberg, J.G.H. (1867) Annulata nova. Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar, 23, 97-103.
Kobayashi, S. (1938a) Earthworms from Hakodate, Hokkaidô. Annotationes Zoologicae Japonenses, 17, 405-417.
Kobayashi, S. (1938b) Earthworms of Korea. I. Science Reports of the Tohoku Imperial University, 13, 89-170.
Kumar, S., Stecher, G. \& Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. \& Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics,

23, 2947-2948.
https://doi.org/10.1093/bioinformatics/btm404
Michaelsen, W. (1922) Oligochäten aus dem Rijks Museum van Natuurlijke Historie zu Leiden. Capita Zoologica, 1 (3), 1-68. [in German]
Michaelsen, W. (1934) Oligochaeta from Sarawak. Quarterly Journal of Microscopical Science, 77, 1-47.
Müller, F. (1856) Lumbricus corethrurus, Bürstenschwanz. Archiv für Naturgeschichte, 23, 113-116.
Nguyen, T.T., Lam, D.H. \& Nguyen, A.D. (2016a) On the giant pheretimoid earthworms from Vietnam (Clitellata: Megascolecidae), with descriptions of three new species. Zoological Studies, 55, 52. https://doi.org/10.6620/ZS.2016.55-52
Nguyen, T.T., Nguyen, A.D., Tran, B.T.T. \& Blakemore, R.J. (2016b) A comprehensive checklist of earthworm species and subspecies from Vietnam (Annelida: Clitellata: Oligochaeta: Almidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Moniligastridae, Ocnerodrilidae, Octochaetidae). Zootaxa, 4140 (1), 1-92. https://doi.org/10.11646/zootaxa.4140.1.1
Nguyen, T.T., Trinh, K.-B.T., Nguyen, H.-L.T. \& Nguyen, A.D. (2017) Earthworms (Annelida: Oligochaeta) from islands of Kien Hai District, Kien Giang Province, Vietnam, with descriptions of two new species and one subspecies. Journal of Natural History, 51 (15-16), 883-915. https://doi.org/10.1080/00222933.2017.1294213
Ohfuchi, S. (1935) On some new species of earthworms from north-eastern Hondo, Japan. Science Reports of the Tohoku Imperial University, 10, 409-415.
Ohfuchi, S. (1937) On the species possessing four pairs of spermathecae in the genus Pheretima, together with the variability of some external and internal characteristics. Saito Ho-on Kai Museum Research Bulletin, 12, 31-136.
Ohfuchi, S. (1957) On a collection of the terrestrial Oligochaeta obtained from the various localities in Riû-kiû Islands, together with the consideration of their geographical distribution (Part II). Journal of Agricultural Science Tokyo Nogyo Daigaku, 3 (2), 243-261.
Perrier, E. (1872) Recherches pour servir a l'histoire des Lombriciens terrestres. Nouvelles Archives du Muséum d'Histoire Naturelle (Paris), 8, 5-198. [in French] https://doi.org/10.5962/bhl.title. 12201
Shen, H.-P. (2012) Three new earthworms of the genus Amynthas (Megascolecidae: Oligochaeta) from eastern Taiwan with redescription of Amynthas hongyehensis Tsai and Shen, 2010. Journal of Natural History, 46 (37-38), 2259-2283. https://doi.org/10.1080/00222933.2012.716867
Shen, H.-P. (2018) Biogeography meets taxonomy: Distribution-based inferences on the accuracy of identification and synonymization of East Asian earthworms. Zootaxa, 4496 (1), 313-336. https://doi.org/10.11646/zootaxa.4496.1.26
Shen, H.-P., Chang, C.-H. \& Chih, W.-J. (2014) Five new earthworm species of the genera Amynthas and Metaphire (Megascolecidae: Oligochaeta) from Matsu, Taiwan. Journal of Natural History, 48 (9-10), 495-522. https://doi.org/10.1080/00222933.2013.826742
Shen, H.-P., Chang, C.-H. \& Chih, W.-J. (2016) Four new earthworm species of the genus Amynthas (Megascolecidae: Oligochaeta) from southwestern Taiwan with re-description of Amynthas tungpuensis Tsai, Shen and Tsai, 1999. Journal of Natural History, 50 (29-30), 1889-1910. https://doi.org/10.1080/00222933.2016.1180721
Shen, H.-P., Tsai, C.-F. \& Tsai, S.-C. (2002) Description of a new earthworm belonging to the genus Amynthas (Oligochaeta: Megascolecidae) from Taiwan and its infraspecific variation in relation to elevation. The Raffles Bulletin of Zoology, 50 (1), 1-8.

Shen, H.-P., Tsai, C.-F. \& Tsai, S.-C. (2003) Six new earthworms of the genus Amynthas (Oligochaeta: Megascolecidae) from central Taiwan. Zoological Studies, 42 (4), 479-490.
Shen, H.-P., Tsai, S.-C. \& Tsai, C.-F. (2005) Occurrence of the earthworms Pontodrilus litoralis (Grube, 1855), Metaphire houlleti (Perrier, 1872), and Eiseniella tetraedra (Savigny, 1826) from Taiwan. Taiwania, 50 (1), 11-21.
Shen, H.-P., Tsai, S.-C. \& Tsai, C.-F. (2008) A new record of the exotic ocnerodrilid earthworm Eukerria saltensis (Beddard, 1895) from Taiwan. Endemic Species Research, 10 (1), 85-90.

Shen, H.-P., Yu, H.-T. \& Chen, J.-H. (2012) Parthenogenesis in two Taiwanese mountain earthworms Amynthas catenus Tsai et al., 2001 and Amynthas hohuanmontis Tsai et al., 2002 (Oligochaeta, Megascolecidae) revealed by AFLP. European Journal of Soil Biology, 51, 30-36. https://doi.org/10.1016/j.ejsobi.2012.03.007
Shen, H.-P., Tsai, C.-F., Fang, Y.-P. \& Chen, J.-H. (2011) Parthenogenesis, polyploidy and reproductive seasonality in the Taiwanese mountain earthworm Amynthas catenus Tsai et al., 2001 (Oligochaeta, Megascolecidae). Pedobiologia, 54 (2), 133-139.
https://doi.org/10.1016/j.pedobi.2010.12.002
Sims, R.W. \& Easton, E.G. (1972) A numerical revision of the earthworm genus Pheretima auct. (Megascolecidae: Oligochaeta) with the recognition of new genera and an appendix on the earthworms collected by the Royal Society North Borneo Expedition. Biological Journal of the Linnean Society, 4, 169-268.
https://doi.org/10.1111/j.1095-8312.1972.tb00694.x

Song, M.-J. \& Paik, K.-Y. (1970) On a small collection of earthworms from Geo-je Isl., Korea. Korean Journal of Zoology, 13 (4), 110-111.

Stephenson, J. (1931) Oligochaeta from Burma, Kenya, and other parts of the world. Proceedings of the Zoological Society of London, 1931, 33-92.
Thai, T.B. (1984) New species of the genus Pheretima in Vietnam. Zoologicheskii Jurnal, 63 (9), 1317-1328. [in Vietnamese with English abstract]
Tsai, C.-F. (1964) On some earthworms belonging to the genus Pheretima Kinberg collected from Taipei area in North Taiwan. Quarterly Journal of the Taiwan Museum, 17 (1\&2), 1-35.
Tsai, C.-F., Shen, H.-P. \& Tsai, S.-C. (1999) On some new species of the pheretimoid earthworms (Oligochaeta: Megascolecidae) from Taiwan. Journal of the National Taiwan Museum, 52 (2), 33-46.
Tsai, C.-F., Shen, H.-P. \& Tsai, S.-C. (2001) Some new earthworms of the genus Amynthas (Oligochaeta: Megascolecidae) from Mt. Hohuan of Taiwan. Zoological Studies, 40 (4), 276-288.
Tsai, C.-F., Shen, H.-P. \& Tsai, S.-C. (2002) A new athecate earthworm of the genus Amynthas Kinberg (Megascolecidae: Oligochaeta) from Taiwan with discussion on phylogeny and biogeography of the A. illotus species-group. Journal of Natural History, 36, 757-765. https://doi.org/10.1080/00222930010026391
Tsai, C.-F., Shen, H.-P. \& Tsai, S.-C. (2004a) Endemicity and altitudinal stratification in distribution of megascolecid earthworms in the centro-western Taiwan. Endemic Species Research, 6(2), 1-18.
Tsai, C.-F., Shen, H.-P. \& Tsai, S.-C. (2010) Four new species of Amynthas earthworms (Oligochaeta: Megascolecidae) from the Central Mountain Range of southern Taiwan. Journal of Natural History, 44 (21-24), 1251-1267. https://doi.org/10.1080/00222931003624788
Tsai, C.-F., Tsai, S.-C. \& Liaw, G.-J. (2000) Two new species of proandric pheretimoid earthworms belonging to the genus Metaphire (Megascolecidae: Oligochaeta) from Taiwan. Journal of Natural History, 34, 1731-1741. https://doi.org/10.1080/00222930050122156
Tsai, C.-F., Tsai, S.-C. \& Shen, H.-P. (2004b) A new gigantic earthworm of the genus Metaphire Sims and Easton (Megascolecidae: Oligochaeta) from Taiwan with reference to evolutional trends in body sizes and segment numbers of the Pheretima genus-group. Journal of Natural History, 38 (7), 877-887. https://doi.org/10.1080/0022293021000053867
Tsai, C.-F., Shen, H.-P., Tsai, S.-C. \& Lee, H.-H. (2007) Four new species of terrestrial earthworms belonging to the genus Amynthas (Megascolecidae: Oligochaeta) from Taiwan with discussion on speculative synonyms and species delimitation in oligochaete taxonomy. Journal of Natural History, 41 (5-8), 357-379. https://doi.org/10.1080/00222930701201279
Tsai, C.-F., Shen, H.-P., Tsai, S.-C., Lin, K.-J., Hsieh, H.-L. \& Yo, S.-P. (2009) A checklist of oligochaetes (Annelida) from Taiwan and its adjacent islands. Zootaxa, 2133, 33-48. https://doi.org/10.11646/zootaxa.2133.1.3
Zhao, Q., Sun, J. \& Qiu, J.-P. (2009) Three new species of the Amynthas hawayanus- group (Oligochaeta: Megascolecidae) from Hainan Island, China. Journal of Natural History, 43 (17-18), 1027-1041. https://doi.org/10.1080/00222930902767433

[^0]: ${ }^{1}$ Type locality.
 ${ }^{2}$ Paratype locality.

[^1]: ${ }^{1}$ Data from Kobayashi (1938a).

